参考了一下CF官方给的题解,并结合自己的做题感悟,主要考察普通并查集,图的连通性。
定义一个数量数组shu【100010】,记录每种菜被吃了几次;定义ans,记录不能满足的客人数。
我是这样思考的,不需要dp什么的,顺序请客人,当他的口味
1.至少一种之前还没有人吃过,那么他可以吃没人吃的那个,肯定能做到不让他失望。之后把那两种菜的shu数组值各自加一,并查集并到一块去。
2.两种之前都被人吃过,但并查集的值不一样,也是可以的,读者可以想象成一个链,第一个人吃两个,后续每一个人吃一个。之后把那两种菜的shu数组值各自加一,并查集并到一块去。
3.唯一的一种不能满足的情况,两种之前都被人吃过,但并查集的值一样,这就相当于链成了环,最后一个人吃不到东西,这种情况ans++。
代码如下:
#include<iostream>
using namespace std;
#include<set>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
#include<stdlib.h>
#include<iomanip>
#include<fstream>
#include<stdio.h>
#include<stack>
#include<queue>
#include<ctype.h>
#include<vector>
#define lowbit(x) (x&(-x))
#define inf 1e8
inline int read()//快读模板
{
bool flag = false; int x = 0;
char ch = getchar();
while (ch < '0' || ch > '9')
{
if (ch == '-') flag = true;
ch = getchar();
}
while (ch >= '0' && ch <= '9')
{
x = (x << 1) + (x << 3) + ch - '0';
ch = getchar();
}
return flag ? -x : x;
}
int dir[5][3] =
{
{0,1},{0,-1},{1,0},{-1,0}
};
//
int n, k, i, j, ans;
int shu[100010], cha[100010];
int find(int x)//一条路径上的点全部更新了cha[ ]值
{
int i = x, j;
while (cha[x] != x)
{
x = cha[x];
}
while (i != x)
{
j = cha[i];
cha[i] = x;
i = j;
}
return x;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> k;
for (i = 1; i <= n; i++)
{
cha[i] = i;
}
for (i = 1; i <= k; i++)
{
int x, y;
cin >> x >> y;
if ((shu[x]==0||shu[y]==0)||shu[x]&&shu[y]&&find(x)!=find(y))//这个地方一定是find()比较,cha[ ]比较是不准的,值可能没有更新
{
int rootx = find(x), rooty = find(y);
shu[x]++;
shu[y]++;
cha[rootx] = rooty;//一定是一个并查集的根插到另一个根上面去,保证两个集指向的根相等
}
else
{
ans++;
}
}
cout << ans;
}
限于笔者水平不够,如有不当,欢迎批评指正。