GhostNet V2家族的华为GhostNet是一项令人印象深刻的计算机视觉创新,它在CVPR2020(计算机视觉与模式识别会议)中超越了谷歌的MobileNet。本文将详细介绍华为GhostNet的设计理念和特点,并提供相应的源代码示例。
华为GhostNet是一种轻量级神经网络架构,旨在在计算资源有限的情况下提供高效的图像分类和目标检测能力。它采用了一系列创新的设计策略,使得网络具备更强的表征能力和更低的计算成本。
以下是华为GhostNet的关键设计特点:
- Ghost模块:Ghost模块是GhostNet的核心组件,它通过引入"Ghost"特征通道分组的概念来提高网络的效率。Ghost模块将输入特征图分割成多个较小的分组,然后通过使用低秩卷积操作在每个分组中进行特征图的变换。这种设计减少了计算量和参数量,同时提高了网络的表征能力。
下面是Ghost模块的示例代码:
import torch
import torch.nn as nn
class