YOLOv5是一种流行的计算机视觉模型,用于目标检测任务。调整模型的超参数可以显著影响其性能和速度。本文将手把手地介绍如何调整YOLOv5模型的超参数,以获得更好的检测结果。我们将重点关注学习率、批大小和输入图像尺寸这三个关键超参数。
- 学习率调整
学习率是控制模型参数更新速度的重要超参数。通常,我们可以采用学习率衰减的策略,逐渐减小学习率,从而使模型在训练初期更快地收敛,然后在训练后期细化参数。
python train.py --img 640 --batch 16 --epochs 300 --d