rapid serial visual presentation

快速阅读在以下情况下非常有用:

(1)阅读技术文档,包括各种论坛上的问题答案、函数使用手册、教程等等;

(2)从大量冗余信息中迅速获取有效信息,比如开会时候发放的手册中寻找自己感兴趣的poster。

有以下几点可用来提高阅读速度的技巧:

(1)跳读重点;

(2)让自己不默默出声地迅速移动眼球,控制缩短在每个字符上停留的时间。

(3)闪读

后面两种技巧可以通过rapid serial visual presentation训练,以下是详细文章。我在ios上使用outreach App来训练。

https://kinja.com/api/profile/getsession?redirect=https%3A%2F%2Flifehacker.com%2Fsetsession%3Fr%3Dhttps%253A%252F%252Flifehacker.com%252Fthe-truth-about-speed-reading-1542508398

实验过程:快速序列视觉呈现(Rapid serial visual presentation,RSVP)范式下,100~999数字图片组成的随机序列,每张图片呈现10ms,制作成视频,其中的目标图片是100或200。视频图片序列如下图所示。共有10个受试参加实验。受试者的任务是观看视频,当看到目标图片时尽快按键。测试每个视频受试的眼动数据。此处对每位受试选取45个目标试次,45个非目标试次。每个试次含有5个特征,即为500-600 ms, 500-700 ms, 500-800 ms, 500-900 ms, 500-1000 ms 这五个区间瞳孔扩张时瞳孔尺寸的平均振幅。sub1-sub12,总共12个受试者的number的数据。 数据格式:12位受试12个.mat文件每个.mat文件的数据都是90*5的矩阵,总共90个试次。其中前45试次是目标试次,后45个试次是非目标试次。 每个试次包括5个平均瞳孔尺寸,也就是5个特征,5个特征分别是由500-600 ms, 500-700 ms, 500-800 ms, 500-900 ms, 500-1000 ms 这五个区间的的平均振幅所提取出。 3、任务要求: 1)以前23个目标试次和非目标试次作为训练数据,后22个目标和非目标试次作为测试数据。 2)采用神经网络分类方法,对目标和非目标进行分类。 3)计算评价指标有AUC、准确率ACC、混淆矩阵等,给出不同分类方法的AUC和准确率ACC均值方差图。 4)对不同分类方法的分类性能进行统计分析,如配对T检验或重复测量的方差分析。MATLAB实现上述问题, 提供MATLAB代码
05-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值