Iriving_shu
码龄8年
关注
提问 私信
  • 博客:178,909
    178,909
    总访问量
  • 74
    原创
  • 2,274,111
    排名
  • 28
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2016-12-24
博客简介:

Iriving_shu的博客

查看详细资料
个人成就
  • 获得28次点赞
  • 内容获得26次评论
  • 获得108次收藏
创作历程
  • 4篇
    2019年
  • 18篇
    2018年
  • 53篇
    2017年
  • 2篇
    2016年
成就勋章
TA的专栏
  • 玩转ros操作系统
    5篇
  • 软件安装记录
    7篇
  • slam paper系列
  • c++学习笔记
    9篇
  • 人脸识别之损失函数
    10篇
  • caffe学习笔记
    12篇
  • 深度学习论文阅读
    6篇
  • 模型实践
    1篇
  • 数据预处理
    2篇
  • 模型压缩与加速
    4篇
  • 前向框架学习与优化
    1篇
  • 人脸检测
    1篇
  • Cuda编程
    2篇
  • linux常用操作
    1篇
  • mxnet-module之路
    1篇
  • 人脸识别之角度问题
    1篇
  • mxnet-gluon之路
    5篇
  • 目标检测系列
  • pytorch踩坑之路
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

pytorch-指定多gpu训练

如何指定到 4,5,6,7号卡方法一:步骤: # gpu init multi_gpus = False if ',' in args.gpus: gpu_ids = [int(id) for id in args.gpus.split(',')] multi_gpus = True else: gpu_ids =...
原创
发布博客 2019.04.12 ·
9400 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

hybrid_forward 参数问题

下面代码是全连接层的实现。可以看到 hybrid_forward 的输入参数为:(self, F, x, weight, bias=None)。F是NDArray或者Symbol.X是输入的值。 我们返现 weight, bias=None 并没有传入,而是通过在__init__里用self.weight = self.params.get(…)以后,这个weight就会自动被传到hybri...
原创
发布博客 2019.01.31 ·
1458 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

轻量网络之ShuffleNet

简介本文是来自face++ 的ShuffleNet. 比mobilenet 在imagenet上准确率高 (absolute 7.8%) 。论文地址:https://arxiv.org/pdf/1707.01083.pdf代码地址:https://github.com/farmingyard/ShuffleNetMotivation之前的Google的网络Xception采用深度可分离卷...
原创
发布博客 2019.01.09 ·
549 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

轻量模型之SqueezeNet网络

简介2016年2月,《AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size》 发表在ICLR-2017。论文地址:https://arxiv.org/abs/1602.07360模型地址:https://github.com/DeepScale/SqueezeNet核心思想:大量使用1x1卷机...
原创
发布博客 2019.01.08 ·
769 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

mxnet如何打印symbol输出维度

arg_name = fc1.list_arguments()out_name = fc1.list_outputs()arg_shape, out_shape, _ = fc1.infer_shape(data=(1,3,112,112))print({'input' : dict(zip(arg_name, arg_shape)),'output' : dict(zip(out_name...
原创
发布博客 2018.08.29 ·
3001 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

mxnet(gluon)学习之路-自动求导

简介mxnet 提供了自动求导的方法,相比于使用caffe需要自己写反向传播,这可以更加节约我们的时间。求导例如: y = 4 * x^2 x = [[1,2; 3,4]] dy/dx = 8x = [[8,16;24,32]] 使用mxnet自动求导: x = mx.nd.array([[1,2], [3,4]]) x.attach_grad() ...
原创
发布博客 2018.08.05 ·
1584 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

mxnet(gluon)学习之路-mnist训练

训练流程import mxnet as mxfrom mxnet.gluon import loss as gloss, nnimport mxnet.gluon as gluonfrom mxnet import autogradimport mxnet.ndarray as ndimport numpy as npimport mxnet.metricclass LeNet...
原创
发布博客 2018.08.05 ·
1548 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

mxnet(gluon)学习之路-使用HybridBlock构建网络

简介mxnet gluno接口提供 Sequential, HybridSequential 通过 add 串联的形式将构建网络,同时也提供HybridBlock通过继承的方式来构建网络,那么他们之间有什么区别呢? 1. Sequential构建的是动态图,即命令式编程形式,这种形式可以很方便的debug。例如:net = nn.Sequential()net.add( ...
原创
发布博客 2018.08.04 ·
5591 阅读 ·
3 点赞 ·
0 评论 ·
13 收藏

mxnet(gluon)学习之路-网络可视化

如何可视化网络神经网络的可视化是十分有用的,对于之前学习caffe的同学来说可以使用 netscope来进行可视化,而对于mxnet来说我们可以使用mxnet自身的函数完成可视化。import mxnet as mxfrom mxnet import gluonnum_hidden = 64net = gluon.nn.HybridSequential()with net.nam...
原创
发布博客 2018.08.04 ·
1361 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Pose-Robust Face Recognition via Deep Residual Equivariant Mapping

简介:这篇文章来自于商汤CVPR2018 论文链接: 代码链接:算法核心: 人脸识别系统中角度对识别有很大的影响,通过CNN提取的特征,侧脸分布离正脸较远,如下图所示: 这篇文章提出了Deep Residual EquivAriant Mapping (DREAM) 来完成 侧脸特征到正脸特征的映射,使得侧脸特征逼近正脸特征。 该算法的整个框架如...
原创
发布博客 2018.06.26 ·
992 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

模型加速-小网络论文跟踪

(一)SqueezeNet2016年2月,《AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size》 论文地址:https://arxiv.org/abs/1602.07360 模型地址:https://github.com/DeepScale/SqueezeNet 核心思想:大量使用1x1...
原创
发布博客 2018.06.07 ·
355 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ubuntu安装bob

1.安装依赖库sudo apt-get install libboost-all-dev sudo apt-get install libblitz0-dev sudo apt-get install cmake sudo apt-get install libhdf5-serial-dev sudo apt-get install libtiff5 sudo apt-get ins...
原创
发布博客 2018.05.17 ·
1212 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

linux统计文件数,文件夹数

1. 递归统计文件夹数ls -lR | grep "^d" | wc -l2. 递归统计文件数 ls -lR| grep "^-" | wc -l3. 只统计图片数 ls -lR| grep "*.jpg" | wc -l
原创
发布博客 2018.04.20 ·
390 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

线性插值总结

基本原理图像处理中,经常需要对图像进行resize操作,resize底层原理就是线性插值,下面主要对线性插值, 双线性插值进行总结,以免忘记。(1)最近邻插值 设源图像大小为m,n, 目标图像大小为a,b 。则目标图像中坐标(i,j)对应到源图像坐标(x,y)为: x = int(i * m/a + 0.5), y=int(j*n/b+0,5)。 (2)双线性插值 设源图像大小为m,n, 目标
原创
发布博客 2018.03.17 ·
2330 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(二)cuda学习笔记之 cuda基本概念

Cuda编程基本概念CUDA C基础Cuda C是对c/c++语言进行拓展后形成的变种,兼容C/C++语法,文件类型为.cu文件,编译器使用的是nvcc。相比传统的C/C++,主要添加了一下几个方面:函数类型限定符(如__global__, __device__,__host__)执行配置运算符五个内置变量变量类型限定符其他的还有数学函数,原子函数,纹理函数,绑定函数等函数限定符用来确定某
原创
发布博客 2018.02.05 ·
519 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

cuda学习笔记一之GPU基本概念

简介毕业工作以来从事深度学习方面工作,但在实际项目中需要对项目进行加速,因此需要学习cuda,此笔记简略记录学习cuda的历程。GPU基本概念什么是cuda?CUDA是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务。而我们常说的CUDA其实一个gpu编程库,他以c/c++为基础提供一些gpu编程接口。
原创
发布博客 2018.02.04 ·
1079 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

网络加速之mobilenetV1

简介mobilenet是google发布的手机端的网络的结构,其目的是从结构上减少网络参数,加速网络运行,这方面的文章还有shufflenet, condenset。创新点depthwise separable(深度分分离卷积) 引入参数进行通道和feature map调整深度可分离卷积mobilenet实现加速的核心部分就是使用深度可分离卷积进行加速。传统的卷积方式是卷积核对所有输入的fea
原创
发布博客 2018.01.28 ·
1134 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

sphereface loss=87.33分析

经验sphereface中由于添加了margin的参数,当margin=4时,训练样本中很多达到优化条件,如下图所示,cos(mx) < cosx,所以会造成 特征的 模增大,模增大则导致log括号里面的数值超过最小float,loss的最大值由FLT_MIN得到,FLT_MIN定义为1.17549435E-38F,这个数字的自然对数正好就是 -87.3356,算loss时需要取负值,结果就能
原创
发布博客 2018.01.27 ·
893 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

loss函数之margin改进方法

最近sphereface人脸方法是目前开源人脸中最有效的方法,通过改进我也获得了lfw acc 99.7%的结果,下面几篇也是对sphereface改进的论文:AM : Additive Margin Softmax for Face VerificationAAM : Face Recognition via Centralized Coordinate LearningArcFace: ArcF
原创
发布博客 2018.01.27 ·
4699 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

Caffe之Scale层源码

简介最近要对模型进行压缩使用slimming,因此需要scale层对scale_diff进行L1正则。所以对源码进行了阅读。 公式: y = ax + b。 公式比较简单。上述公式的意思是,对feature map乘以a,并加b。一个feature map共用一个a,因此 a的维度是 c ,这是理解源码的前提。 反向传播: 参数设置message ScaleParameter { opti
原创
发布博客 2018.01.26 ·
969 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏
加载更多