mxnet-gluon之路
文章平均质量分 54
Iriving_shu
这个作者很懒,什么都没留下…
展开
-
mxnet(gluon)学习之路-网络可视化
如何可视化网络神经网络的可视化是十分有用的,对于之前学习caffe的同学来说可以使用 netscope来进行可视化,而对于mxnet来说我们可以使用mxnet自身的函数完成可视化。import mxnet as mxfrom mxnet import gluonnum_hidden = 64net = gluon.nn.HybridSequential()with net.nam...原创 2018-08-04 23:06:03 · 1361 阅读 · 0 评论 -
mxnet(gluon)学习之路-使用HybridBlock构建网络
简介mxnet gluno接口提供 Sequential, HybridSequential 通过 add 串联的形式将构建网络,同时也提供HybridBlock通过继承的方式来构建网络,那么他们之间有什么区别呢? 1. Sequential构建的是动态图,即命令式编程形式,这种形式可以很方便的debug。例如:net = nn.Sequential()net.add( ...原创 2018-08-04 23:49:33 · 5592 阅读 · 0 评论 -
mxnet(gluon)学习之路-mnist训练
训练流程import mxnet as mxfrom mxnet.gluon import loss as gloss, nnimport mxnet.gluon as gluonfrom mxnet import autogradimport mxnet.ndarray as ndimport numpy as npimport mxnet.metricclass LeNet...原创 2018-08-05 00:51:45 · 1548 阅读 · 0 评论 -
mxnet(gluon)学习之路-自动求导
简介mxnet 提供了自动求导的方法,相比于使用caffe需要自己写反向传播,这可以更加节约我们的时间。求导例如: y = 4 * x^2 x = [[1,2; 3,4]] dy/dx = 8x = [[8,16;24,32]] 使用mxnet自动求导: x = mx.nd.array([[1,2], [3,4]]) x.attach_grad() ...原创 2018-08-05 16:14:54 · 1584 阅读 · 0 评论 -
hybrid_forward 参数问题
下面代码是全连接层的实现。可以看到 hybrid_forward 的输入参数为:(self, F, x, weight, bias=None)。F是NDArray或者Symbol.X是输入的值。 我们返现 weight, bias=None 并没有传入,而是通过在__init__里用self.weight = self.params.get(…)以后,这个weight就会自动被传到hybri...原创 2019-01-31 16:45:51 · 1459 阅读 · 0 评论