变态跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

  这个问题确实够变态的,一开始我打算利用动态规划的思想来做这道题,然后就钻到死胡同了。

  拼凑了几个答案之后,我突然醒悟,这极有可能是一道找规律的题。然后我就发现了规律,2n-1。敲代码,运行,完美通过。

  然后,就是分析,为什么是2n-1

  我的分析是,在这个变态跳台阶问题中,除了最后一级台阶必须要跳上去,只有一种可能之外,其他的台阶都有不跳两种选择。

  每级台阶都有两种选择,那么n-1级台阶就有2n-1种选择了,代码如下:

public class Solution {
    public int JumpFloorII(int target) {
        if(target < 1)
            return 0;
        if(target == 1)
            return 1;
        int result = 1;
        for(int i = 1;i < target; i++){
            result *= 2;
        }
        return result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值