一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
这个问题确实够变态的,一开始我打算利用动态规划的思想来做这道题,然后就钻到死胡同了。
拼凑了几个答案之后,我突然醒悟,这极有可能是一道找规律的题。然后我就发现了规律,2n-1。敲代码,运行,完美通过。
然后,就是分析,为什么是2n-1。
我的分析是,在这个变态跳台阶问题中,除了最后一级台阶必须要跳上去,只有一种可能之外,其他的台阶都有跳或不跳两种选择。
每级台阶都有两种选择,那么n-1级台阶就有2n-1种选择了,代码如下:
public class Solution {
public int JumpFloorII(int target) {
if(target < 1)
return 0;
if(target == 1)
return 1;
int result = 1;
for(int i = 1;i < target; i++){
result *= 2;
}
return result;
}
}