摘要
本文提出了一种基于EEG数据,检测残留意识以此来进行情绪识别的BCI系统,同时收集和处理EEG数据,并有实时的feedback,最后在DOC患者上测试,达到唤醒和识别情绪的目的。
关键词
Emotion recognition,EEG,brain-computer interface (BCI),affective computing,disorder of consciousne
背景
DOC(disorder of consciousness)患者因脑损失或脑出血造成严重的运动障碍,通常不能提供足够的情绪表达等特点,主要分为coma,vegetative state(VS),minimal conscious state(MCS),EMCS。
1.为解决临床上针对DOC患者的behavioral scales(行为度量)治疗:外部刺激(external stimuli)进行观察行为反应(behavioral response),造成了高误诊率(high misdiagnosis rates)。
2.目前,还没有一个针对临床上能够有效的识别DOC患者的情绪状态的方法。
创新点
目前还没有使用BCI方法在DOC病人进行情绪研究发现,于是,提出自己的基于BCI系统实时地来完成情绪的有效唤醒和准确识别。
方法
Online系统GUI–实验范式 + offline analysis
Hint + Start +Movie clip + Feedback + Resting
准备
-
【目标选取】:
10 健康学生( H1 - H10 ) from school --> evaluate performance of system
8 DOC患者( P1 - P8 ) from local hospital --> illustrate potential
-
【采集器材】:the SynAmps2 amplifier(Australia)–32 channel EEG cap + 国际10-20系统电极摆放,采样频率为250Hz
-
【刺激材料】:140 video clips for positive and negative from crosstalk show and Chinese movies — evoke(唤醒功能)
score - choose
a level (not at all;slightly;extremely) and a keywords(positive;negative);
40 clips (extremely positive and negative)-20 positive clips and 20 negative clips;
Each clips - 30s;The stimulus materials:pictures,music,video
-
【情绪划分指标】:Positive and Negative
连续维度定义具有很大的差异性,而且评价量表的含义是主观的,再考虑到DOC患者在实验过程中做出情绪反应很困难,过多的情绪划分会给患者造成负担。情绪划分一般分为两种:一种是将它离散化或者多种结合,比如:anger,fear,disgust,happiness,sadness,surprise;还有一种是在连续维度定义,比如:valence,arousal,dominance。
特征提取
- 预处理:移除50Hz的电力线噪声,再用带通滤波器对原始EEG数据进行过滤至0.1Hz到70Hz;
- 使用512-point 短时傅里叶变换(STFT)和1s的非重叠hamming 窗口,计算每个信道的频谱功率变化;
- 计算频段功率值:对delta (1– 3 Hz), theta (4– 7 Hz), alpha (8– 13 Hz), beta (14– 30 Hz), gamma (31– 50 Hz)每个频段的功率值进行平均来计算;
- DE特征的获取等效于对数PSD特征,所以公式为:
x(m,fk)表示STFT后的原始信号的绝对振幅; - 最后再进行DE特征的归一化送入SVM分类器。
情绪识别
使用SVM分类器,加上 LIBSVM 工具箱;
线性kernel作为kernel函数,其他参数default;
将positive clip 的特征向量标记为+1,negative clip的特征向量标记为-1,通过特征向量的分值
来判断情绪识别类型,再输出笑脸和哭脸。
实验
- 对10个健康学生进行实验离线数据分析,将准确率进行卡方检验;
fei为可能出现的类别,一共两类;foi为观测到的数字,自由度为1; - 首先,进行病人10次校准运行(a calibration run)以训练SVM模型;
- 再进行在线实验,每个病人包括五个疗程,每个疗程包含10次试验(5次是积极情绪,5次是消极情绪);
- 离线分类准确率通过重复10次的5-fold cross-validation 方案来提高分类精度的平均值;
对不同频段进行的非参数Friedman test,表明不同频段的分类准确率有显著影响。
表4和表6是分别对健康者和患者的Top20列表对比,说明了了theta频段在情感识别中的重要性;
最后再使用权重图来展示结果:
每个电极的分类权重是所有五个子带的权重的平均值。权重值是从SVM训练模型中提取的,并使用5-fold cross-validation 方案进行平均获取;
呈现:左前额区与 positive emotion 相关,右半球与 negative emotion 相关;
在theta和alpha波段,正面和侧面的时间区域对积极情绪比对消极情绪更活跃,而侧面的时间区域对积极情绪的beta和gamma波段比对消极情绪表现出更大的激活。
P1和P6类似,P4与健康者类似,P1和P6与健康者呈现相反的状态;
P1和P6:前额叶和顶叶区域在delta波段表现出明显较高的反应,而颞区域则表现出较高的theta反应。此外,前20个特征主要位于delta和theta波段;
P4:前20个特征和地形图的分布与健康受试者更相似;前额叶和顶叶区域对积极情绪表现出更强的theta和alpha反应;而外侧颞叶对积极情绪表现出高的beta 和 gamma反应;
结论与不足
大胆猜想:对有DOC的病人的康复来说,调节他们的情绪可能是有用的。
不足:未展现P3-P5-P7-P8患者的原因,也是由于特定情绪没有被充分唤起,可能在于与病人的注意力和兴趣相关;BCI的算法未能不能达到识别效果;
- 实验人数应该增加
- 设计BCI范式
- 更多的情绪类别需要考虑
- 更多的生活场景和自我诱导的情绪信号还没有得到证实
展望:该系统能够作为检测DOC患者意识水平的潜在工具。
我的思考:
- 情绪划分类别过少,但是前文作者有给出解释,担心对于DOC患者本身过多的情绪特征会造成负担;
- 刺激材料过于单一,本文只给出了积极和消极特征明显的中国电影视频,会不会造成系统的唤醒的能力是否是有限的?
- 测试对象是否过少,跟做作者后面的总结有重合
- 系统的算法模型和DE提取可以换其他模型进行尝试?
参考
参考文献
[1]: 原文
[2]: 自查10-20系统的电极名称