P1829 莫比乌斯反演

题目传送门

题意:

计算 \sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i,j) 。

数据范围:1 \leqslant n,m \leqslant 10^7 。

题解:

这道题大概就是 O(n) 做,并不能带 log 。

化简式子。

\begin{aligned} \sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i,j) &= \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{i*j}{gcd(i,j)} \\ &= \sum_{d=1}^{n}d \sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor} ij[gcd(i,j)=1]\\ \end{aligned}

莫比乌斯反演常用式子:[gcd(i,j)=1] = \sum_{t \mid gcd(i,j)} \mu(t)

\begin{aligned} \sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i,j) &= \sum_{d=1}^{n}d \sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor} ij\sum_{t \mid gcd(i,j)} \mu(t)\\ &= \sum_{d=1}^{n}d \sum_{t=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \mu(t) \sum_{t\mid i}^{\left \lfloor \frac{n}{d} \right \rfloor} \sum_{t\mid j}^{\left \lfloor \frac{m}{d} \right \rfloor} ij \\ &= \sum_{d=1}^{n}d \sum_{t=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \mu(t) \sum_{t\mid i}^{\left \lfloor \frac{n}{td} \right \rfloor} \sum_{t\mid j}^{\left \lfloor \frac{m}{td} \right \rfloor} i*t*j*t \\ &= \sum_{d=1}^{n}d \sum_{t=1}^{\left \lfloor \frac{n}{d} \right \rfloor} t^2\mu(t) \sum_{t\mid i}^{\left \lfloor \frac{n}{td} \right \rfloor} \sum_{t\mid j}^{\left \lfloor \frac{m}{td} \right \rfloor} ij \\ \end{aligned}

分析 \sum_{t = 1}^{\left \lfloor \frac{n}{td} \right \rfloor} \sum_{t=1}^{\left \lfloor \frac{m}{td} \right \rfloor} ij 如何 O(1) 计算。

如果写成 \sum_{i=1}^{x}i * \sum_{j=1}^{y}j 的形式,相信你就会了吧。

设 f(\left \lfloor \frac{n}{td} \right \rfloor , \left \lfloor \frac{m}{td} \right \rfloor)=\sum_{t = 1}^{\left \lfloor \frac{n}{td} \right \rfloor} \sum_{t=1}^{\left \lfloor \frac{m}{td} \right \rfloor} ij 。

\begin{aligned} \sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i,j) &= \sum_{d=1}^{n}d \sum_{t=1}^{\left \lfloor \frac{n}{d} \right \rfloor} t^2\mu(t)f(\left \lfloor \frac{n}{td} \right \rfloor,\left \lfloor \frac{m}{td} \right \rfloor) \end{aligned} 

我们可以维护 d 的前缀和,t^2\mu(t) 的前缀和。

然后整除分块套整除分块,然后就可以算出来了。具体怎么套,代码解释的很清楚。

时间复杂度:O(\sqrt{n}*\sqrt{n}) = O(n)

感受:

学会了整除分块套整除分块。

感觉写的莫比乌斯反演题用的都是那个结论。

代码:

#include<bits/stdc++.h>
using namespace std ;
typedef long long ll ;
typedef pair<int , int> pli ;
const int maxn = 1e7 + 5 ;
const ll mod = 20101009 ;
bool vis[maxn] ;
int prime[maxn] ;
int mu[maxn] ;
ll pre[maxn] ;
int cnt = 0 ;
void get_mu(int n)
{
   mu[1] = 1 ;
   for(int i = 2 ; i <= n ; i ++)
   {
     if(!vis[i])  prime[++ cnt] = i , mu[i] = -1 ;
     for(int j = 1 ; j <= cnt && prime[j] * i <= n ; j ++)
     {
       vis[prime[j] * i] = 1 ;
       if(i % prime[j] == 0)  break ;
        else  mu[i * prime[j]] = -mu[i] ;
     }
   }
   for(int i = 1 ; i <= n ; i ++)  
     pre[i] = pre[i - 1] + ll(i) * i % mod * mu[i] % mod ,
	 pre[i] %= mod ;
}
ll sum(int x)
{
	return (ll(x) * (x + 1) / 2) % mod ;
}
ll g(int n , int m)
{
	if(n > m)  swap(n , m) ;
	ll ans = 0 ;
	for(int l = 1 , r ; l <= n ; l = r + 1)
	{
		r = min(n / (n / l) , m / (m / l)) ;
		ll c = (pre[r] - pre[l - 1] + mod) % mod ;
		ans += c * sum(n / l) % mod * sum(m / l) % mod ;
		ans %= mod ;
	}
	return ans ;
}
void solve(int n , int m)
{
	if(n > m)  swap(n , m) ;
	ll ans = 0 ;
	for(int l = 1 , r ; l <= n ; l = r + 1)
	{
		r = min(n / (n / l) , m / (m / l)) ;
		ll c = (sum(r) - sum(l - 1) + mod) % mod ;
		ans += c * g(n / l , m / l) % mod ;
		ans %= mod ;
	}
	printf("%lld\n" , ans) ;
}
int main()
{
	int n , m ;
	int num = 1e7 ;
	get_mu(num) ;
	scanf("%d%d" , &n , &m) ;
	solve(n , m) ;
	return 0 ;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值