二分查找的两种写法,递归和普通循环~ 大部分情况下都用普通的循环,因为递归法费空间。
/*
时间复杂度:
1.最坏情况 查找最后一个元素(或者第一个元素) Master定理 T(n)=T(n/2)+O(1) 这个O(1)是判断 所以 T(n)=O(logn)
a=1 b=2 所以要比较的是 O(1)和 n^(log2 1)
2.最好情况 查找中间元素 O(1)
空间复杂度:
S(n)=n
*/
int biFind(int* A,int len,int item,int cur){
//example: len 4: 2 4 5 3 middle = 1 (1.5)
//example: len 5: 2 5 6 4 1 middle = 2
int middle = (len-1)/2;
if (A[middle]==item)
return cur;
if (len==1)
return -1;
if(A[middle]>item)
return biFind(A, middle, item,cur);
return biFind(A+middle+1, len-middle-1, item,cur+middle+1);
}
int biFind_1(int* A,int x,int y,int item){
//划分
int m = x+(y-x)/2;
while (x<y) {//说明还有要搜索的必要
if(A[m]==item) return m;//找到了 返回
else if(item<A[m]) y=m;//item在左边 所以右端更新为m
else x=m+1;//item在右边 所以左边更新为m+1
m = x+(y-x)/2;//更新middle
}
return -1;//说明没有找到
}
//lower_bound的定义 = 若A中有item 则返回A中item第一次出现的位置
//若没有item 则返回i:这个i可以是的 把A[i],A[i+1]...后遗 把item插入到A[i]可以保证A有序
int lower_bound(int* A,int x,int y,int item){
//划分
int m ;
while (x<y) {//说明还有要搜索的必要
m = x+(y-x)/2;//更新middle
if(A[m]>=item) y=m;//找到了但是左面有可能还有 或者 中间元素大于item
else x=m+1;//item在右边 所以左边更新为m+1
}
//如果一直没找到 此时x==y 且是正中间
return x;
}