题意:
Description
有排成一行的n个格子,你需要在 m 种颜色中选取 k 种颜色对这 n 个格子染色,要求k 种颜色都要使用,且相邻格子的颜色不同,求方案数(答案对 10^9 + 7取模)。
Input
第一行为测试数据组数T( 1 <= T <= 10).每组测试数据:第一行有两个个整数n, m, k. (1 <= n, m <= 1e9, k <= 1e6)。
Output
一个整数, 为染色方案数, 输出答案对 1e9 + 7 取模.
Sample Input
3
3 4 2
3 4 3
3 4 4
Sample Output
12
24
0
思路:
这道题难度不小,需要利用卢卡斯定理+容斥定理+线性求阶乘逆元来求解~,答案为C(m,k)✖️(k✖️(k-1)^(n-1) - C(k,k-1)✖️(k-1)✖️(k-2)^(n-1) + C(k,k-2)✖️(k-2)✖️(k-3)(n-1)…C(k,1)✖️1✖️0(n-1))
代码:
#include <stdio.h>
#define ll long long
#define N 1000000
#define mod 1000000007
ll n, m, k;
ll fact[N + 5], inv[N + 5];
ll extend(ll a, ll b, ll &x, ll &y) {
if(a == 0 && b == 0) return -1;
if (b == 0) {
x = 1;
y = 0;
return a;
}
ll d = extend(b, a % b, y, x);
y -= a / b * x;
return d;
}
ll reverse(ll a, ll n) {
ll x, y;
ll d = extend(a, n, x, y);
if (d == 1) return (x % n + n) % n;
return -1;
}
void init() {
fact[0] = fact[1] = 1;
for (int i = 2; i <= N; i++) {
fact[i] = fact[i - 1] * i % mod;
}
inv[N] = reverse(fact[N], mod);
for (int i = N - 1; i >= 0; i--) {
inv[i] = inv[i + 1] * (i + 1) % mod;
}
}
ll C(ll n, ll m) {
if (n < m || m < 0) return 0;
if (n < mod) return fact[n] * inv[m] % mod * inv[n - m] % mod;
return C(n / mod, m / mod) * C(n % mod, m % mod) % mod;
}
ll ls(ll n, ll m) {
if (n < m || m < 0) return 0;
ll mm = n - m;
ll ans = 1;
for (int i = mm + 1; i <= n; i++) {
ans = i * ans % mod;
}
return ans * inv[m];
}
ll quick(ll a, ll b) {
ll ans = 1;
while(b) {
if (b & 1) {
ans = ans * a % mod;
}
b /= 2;
a = a * a % mod;
}
return ans;
}
int main() {
init();
int T;
scanf("%d", &T);
while(T--) {
scanf("%lld%lld%lld", &n, &m, &k);
ll ans = ls(m, k);
ll t = k * quick(k - 1, n - 1) % mod;
int tot = -1;
for (int i = k - 1; i >= 1; i --) {
t = (t + tot * (C(k, i) * i % mod * quick(i - 1, n - 1) % mod) + mod) % mod;
tot = -tot;
}
ans = ans * t % mod;
printf("%lld\n", ans);
}
return 0;
}
如果有写的不对或者不全面的地方 可通过主页的联系方式进行指正,谢谢