G - 格子染色计数(容斥原理)

传送门

题意

有排成一行的n个格子,你需要在 m 种颜色中选取 k 种颜色对这 n 个格子染色,要求k 种颜色都要使用,且相邻格子的颜色不同,求方案数(答案对 109 + 7取模)。

思路

思维性较强,需要对容斥原理有比较深的理解。

//线性求逆元公式
//inv[i] = i (% mod)   inv[i] 为 i 的逆元
inv[0] = inv[1] = 1;
for (int i = 2; i <= 2e6; i++)//注意必须从2开始,i =1 时,下面公式为0
		inv[i] = (mod - mod / i) * inv[mod % i] % mod;

容斥原理分析过程:

  1. 求出所有的方案数,也就是下面多项式中的第一项
  2. 求出非法方案总和
    最少 1 种颜色不被使用的方案数 - 最少 2 种颜色不被使用的方案数 + 最少三种颜色不被使用的方案数 - … (显而易见,这就是容斥原理,套公式即可)
    (之所以按照使用方案数递减的顺序来,是因为总方案数是最少使用k种颜色)
  3. 合法方案 = 所有方案 - 非法方案
    也就是最下面ans中的结论了
  4. 如果实在看不懂,建议复习一下容斥原理,然后学习一下 多重集的组合数(AcWing214),学习如何分析使用容斥原理

在这里插入图片描述
(图片中有几处小错误)
① inv 代表 k!的逆元
②中ans应该去掉最后一项,因为要求相邻两个格子颜色不同,所以,最少需要两种颜色

参考题解
时间复杂度 O ( k l o g n ) O(klogn) O(klogn)

Code

const int N = 1e6 + 6;
ll ksm(ll a, ll b)
{
	ll ans = 1;
	for (; b; b >>= 1)
	{
		if (b & 1) ans = ans * a % mod;
		a = a * a % mod;
	}
	return ans;
}

ll fac[N], inv[N];//阶乘,阶乘的逆元

ll C(ll n, ll m)
{
	return fac[n] * inv[m] % mod * inv[n - m] % mod;
}

int main()
{
	fac[0] = inv[0] = fac[1] = inv[1] = 1;
	for (ll i = 2; i < N; i++)
	{
		fac[i] = fac[i - 1] * i % mod;
		inv[i] = (mod - mod / i) * inv[mod % i] % mod;
	}
	for (ll i = 1; i < N; i++)
		inv[i] = inv[i] * inv[i - 1] % mod;

	IOS;
	int T, cas = 0; cin >> T;
	while (T--)
	{
		ll n, m, k; cin >> n >> m >> k;

		ll fackm = 1;
		for (ll i = 1; i <= k; i++)
			fackm = fackm * (m - i + 1) % mod;//A(k, m)

		ll ans = k * ksm(k - 1, n - 1) % mod;
		for (ll i = k - 1, j = 2; i >= 2; i--, j++)
		{
			if (j & 1) ans = (ans + C(k, i) * i % mod * ksm(i - 1, n - 1) % mod) % mod;
			else ans = (ans - C(k, i) * i % mod * ksm(i - 1, n - 1) % mod + mod) % mod;
		}
		ans = ans * fackm % mod * inv[k] % mod;
		cout << "Case #" << ++cas << ": " << ans << endl;
	}


	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

to cling

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值