记得上《数据结构》课程时,利用栈的特性解决过四则混合运算表达式。而如今在编写小型关系数据库的时候,编译部分要处理where后面的逻辑表达式——检查语法正确与否的同时,还要将信息传给下一个接口,进行优化处理,所以存成一棵树的形式是最合理和最方便后续操作的。想到和四则混合运算表达式的处理本质上就是一样的,只是细节方面要考虑更多,要多很多。~
而编写处理加括号的四则混合运算表达式生成一棵二叉树的程序,完全就是为了先从简单例程中熟悉下思路,再着手where语句的处理。
首先需要声明的是:因为只是为了熟悉思路,所以为了处理方便,取了点巧——表达式中的数值部分只采用一位整数,还有只是考虑到括号不匹配的出错情况,其它类似出现不合法符号的错误情况都没有在程序中处理。~目标就是建立一棵二叉树,后序遍历后能够正确按照优先级解析出。
建立二叉树的思路大体如下:
对于没有错误符号的表达式,从最有右端进行扫描,扫描到的字符无非就是:数字、+、-、*、/、(、)。扫描的目的就是找出表达式最后进行的运算,最后操作的运算符可以存为一个节点,而该运算符把表达式分成左右两部分,即为左右子树。如何循环递归下去,会生成一棵二叉树——其中所有叶子节点中存数字,非叶子节点存的是运算符。到这里,你可能会问下面两个问题:1、怎么判断出最后操作的运算符;2、“博主不打算处理括号了吗?”。下面就开始解析这两个问题。
1、怎么判断出最后操作的运算符
如果一个表达式中不存在括号,我想