Google Earth Engine中两种方法计算NDWI水域面积提取

75 篇文章 ¥59.90 ¥99.00
本文介绍了在Google Earth Engine中利用NDWI指数提取水域面积的两种方法:一是基于图像计算,包括导入图像、选择ROI、计算NDWI、阈值提取和面积计算;二是基于特征集计算,同样涉及计算NDWI、阈值提取和水域面积的确定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NDWI(Normalized Difference Water Index)是一种用于提取水域信息的指数。在Google Earth Engine中,我们可以使用两种方法来计算NDWI并提取水域面积。下面将详细介绍这两种方法,并提供相应的源代码。

方法一:基于图像计算NDWI

首先,我们需要选择适当的图像,通常是基于遥感传感器拍摄的多光谱影像。以下是计算NDWI的步骤:

  1. 导入图像并选择感兴趣区域(Region of Interest,ROI):
var image = ee.Image("影像ID");
var roi 
### 归一化水域面积方法 归一化水域面积是一种常见的数据分析技术,用于消除不同尺度或单位的影响,使得数据更加可比。对于水域面积的归一化处理,可以采用以下几种方法: #### 方法一:基于总区域的比例归一化 通过将水域面积除以整个研究区总面积来实现归一化。这种方法适用于需要对比多个区域之间相对水域覆盖的情况。 公式如下: \[ N_{area} = \frac{A_{water}}{A_{total}} \] 其中 \( A_{water} \) 是水域面积,\( A_{total} \) 是研究区总面积[^1]。 --- #### 方法二:基于 NDWI 的阈值分割法 NDWI(Normalized Difference Water Index)可以通过遥感影像提取水体信息,并将其转化为二值图表示是否有水体存在。随后统计水体像元数量并乘以单个像元面积得到实际水域面积。最后可通过上述比例归一化方式进一步标准化。 NDWI 计算公式为: \[ NDWI = \frac{(p(\text{Green}) - p(\text{NIR}))}{(p(\text{Google}) + p(\text{NIR}))} \] 设定合适的阈值(通常为 0 或其他经验值),筛选出水体部分[^2]。 --- #### 方法三:时间序列上的动态归一化 如果目标是对某一区域内不同时期的水域面积进行比较,则可以引入时间维度下的动态归一化策略。具体而言,选取某一年作为基准年份,其余各年的水域面积均以其为基础做比率变换。 假设第 i 年的水域面积记作 \( A_i \),基准年份 j 对应的水域面积为 \( A_j \),则有: \[ N_{i,j} = \frac{A_i}{A_j} \] 此过程能够揭示长期趋势变化特征[^3]。 --- #### 方法四:考虑生态服务价值加权的综合评估模型 当涉及多类生态系统的服务功能评价时,单纯依靠物理意义上的面积可能不足以全面反映实际情况。此时需结合各类用地类型对应的权重系数来进行调整后的归一化运算。例如,在某些场景下森林或者湿地所提供的环境效益远高于普通湖泊水库等自然开放型水源地所贡献的部分;因此有必要针对具体情况设计合理的赋分体系后再执行统一规范化操作[^4]。 --- #### Python 实现示例代码 以下是使用 Earth Engine API 进行简单水域面积计算的一个例子: ```python import ee ee.Initialize() def calculate_normalized_water_area(image_collection, region): # Select images within date range and filter by study area. filtered = image_collection.filterDate('2020-01-01', '2020-12-31').filterBounds(region) def maskWater(img): ndwi = img.normalizedDifference(['B3','B8']).rename('NDWI') waterMask = ndwi.gt(0).selfMask().rename('water_mask') return img.addBands(waterMask) masked_images = filtered.map(maskWater) totalPixels = ee.Image.pixelArea().reduceRegion(**{ 'reducer': ee.Reducer.sum(), 'geometry': region, 'scale': 10}) waterPixels = masked_images.select('water_mask').sum().multiply(ee.Image.pixelArea()).reduceRegion(**{ 'reducer': ee.Reducer.sum(), 'geometry': region, 'scale': 10}) normalizedValue = waterPixels.getNumber('water_mask').divide(totalPixels.getNumber('area')).getInfo() return normalizedValue region_of_interest = ee.Geometry.Rectangle([75.1, 18.7, 77.1, 20.0]) sentinel_2 = ee.ImageCollection("COPERNICUS/S2_SR") normalized_result = calculate_normalized_water_area(sentinel_2, region_of_interest) print(normalized_result) ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值