[BZOJ3052]-[WC2013]糖果公园-树上带修改莫队-200题纪念!!!

说在前面

啊,终于了解掉了自己想要A掉糖果公园的心愿
虽然之前已经写了一道更难的树上莫队题:BZOJ4129 Haruna`s Breakfast

果然还是觉得A掉糖果公园才舒服啊=w=
(听说A一次糖果公园,后面会有二十几个pending,为什么me后面只了几个….不服气)

UPD at 2018.1.11
才发现糖果公园是自己的第200道题,截图留念一下qvq
这里写图片描述


题目

BZOJ3052传送门

题目大意

给出一棵树,节点有各自的颜色(点权均不超过10万),再给出两个数组v[],w[]
定义一条链的权值为:所有链上出现过的颜色的 v[color]i=1totw[i] 之和,其中v[color]表示color颜色对应的权值,tot表示颜色出现次数
现在需要维护以下操作:
1. 1 u v:询问u到v路径的权值
2. 0 u x:把u号点颜色改为x

输入输出格式

输入格式:
第一行三个整数N,M,Q,表示节点个数,颜色种类数,询问个数
第二行M个整数,表示各个颜色的权值
第三行N个整数,表示w[]数组
接下来N-1行,每行两个整数u,v,描述一条树边
再接下来Q行,每行三个整数type,u,v,描述一个操作

输出格式:
对于每个询问操作,输出答案


解法

裸的树上带修改莫队…
如果会树上分块,又曾经写过树上莫队、带修改莫队,数据范围再小一点,这道题就是一眼题
然后去看一看数据范围,嗯,带修改莫队不可做
然后再去看一看时限,嗯,还是带修改莫队吧hhhhh
(OS:10万的数据范围,考场上谁会想得到这题的正解居然是带修改莫队呢= =?强行 N53 以及200秒的时限,心疼评测姬)

具体做法:
关于「树上分块」,参见 BZOJ1089 王室联邦
关于「树上莫队」,参见 SPOJ COT2
关于「带修改莫队」,参见 BZOJ2120 数颜色


下面是自带大长度的代码

/**************************************************************
    Problem: 3052
    User: Izumihanako
    Language: C++
    Result: Accepted
    Time:90662 ms
    Memory:20884 kb
****************************************************************/

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

long long ans[100005] ;
int N , M , Q , tp , head[100005] ;
int V[100005] , W[100005] , candy[100005] , mcnt , qcnt ;
int Bsiz , Btot , bel[100005] , fa[18][100005] , dep[100005] ;

struct Modifies{
    int pos , val , pre , tim ;
}m[100005] ;
struct Queries{
    int u , v , tim ;
    bool operator < ( const Queries &A ) const {
        return bel[u] < bel[A.u] ||
            ( bel[u] == bel[A.u] && bel[v] < bel[A.v] ) ||
            ( bel[u] == bel[A.u] && bel[v] == bel[A.v] && tim < A.tim ) ;
    }
}q[100005] ;
struct Path{
    int pre , to ;
}p[200005] ;

void In( int t1 , int t2 ){
    p[++tp].pre = head[t1] ;
    p[ head[t1] = tp ].to = t2 ;
}

int sta[100005] , topp ;
void dfs( int u ){
    int las = topp ;
    for( int i = head[u] ; i ; i = p[i].pre ){
        int v = p[i].to ;
        if( v == fa[0][u] ) continue ;
        dep[v] = dep[u] + 1 ; 
        fa[0][v] = u , dfs( v ) ;
        if( topp - las >= Bsiz ){
            Btot ++ ;
            while( topp != las ) bel[ sta[topp--] ] = Btot ;
        }
    }
    sta[++topp] = u ;
}

void get_ST(){
    for( int i = 1 ; i <= 17 ; i ++ )
        for( int j = 1 ; j <= N ; j ++ )
            fa[i][j] = fa[i-1][ fa[i-1][j] ] ;
}

int Lca( int u , int v ){
    if( dep[u] < dep[v] ) swap( u , v ) ;
    int t = dep[u] - dep[v] , x = 0 ;
    while( t ){
        if( t & 1 ) u = fa[x][u] ;
        t >>= 1 ; x ++ ;
    }
    if( u == v ) return u ;
    for( int i = 17 ; i >= 0 ; i -- )
        if( fa[i][u] != fa[i][v] )
            u = fa[i][u] , v = fa[i][v] ;
    return fa[0][u] ;
}

void init(){
    Bsiz = pow( N , 2.0 / 3.0 ) ;
    dfs( 1 ) ; fa[0][1] = 1 ;
    get_ST() ;
    if( topp ){
        Btot ++ ;
        while( topp ) bel[ sta[topp--] ] = Btot ;
    }
    sort( q + 1 , q + qcnt + 1 ) ;
}

bool vis[100005] ;
int candy_cnt[100005] ;
long long nowans ;

void Erase_ans( int u ){
    nowans -= 1LL * W[ candy_cnt[candy[u]] ] * V[ candy[u] ] ;
    candy_cnt[candy[u]] -- ;
}

void Insert_ans( int u ){
    candy_cnt[candy[u]] ++ ;
    nowans += 1LL * W[ candy_cnt[candy[u]] ] * V[ candy[u] ] ;
}

void Xor( int u ){
    vis[u] ^= 1 ;
    if( vis[u] == false ) Erase_ans( u ) ;
    else                  Insert_ans( u ) ;
}

void Modify( int u , int x ){
    if( vis[u] ) Erase_ans( u ) ;
    candy[u] = x ;
    if( vis[u] ) Insert_ans( u ) ;
}

void Move( int u , int v ){
    if( dep[u] < dep[v] ) swap( u , v ) ;
    while( dep[u] > dep[v] ){
        Xor( u ) ;
        u = fa[0][u] ;
    }
    while( u != v ){
        Xor( u ) ; Xor( v ) ;
        u = fa[0][u] , v = fa[0][v] ;
    }
}

void solve(){
    int nowU = 1 , nowV = 1 , T = 1 ;
    for( int i = 1 ; i <= qcnt ; i ++ ){
        int u = q[i].u , v = q[i].v , tim = q[i].tim , LCA = Lca( u , v ) ;
        while( m[T].tim < q[i].tim ){
            Modify( m[T].pos , m[T].val ) ;
            T ++ ;
        }
        while( m[T-1].tim > q[i].tim ){
            Modify( m[T-1].pos , m[T-1].pre ) ;
            T -- ;
        }
        Move( nowU , u ) , nowU = u ;
        Move( nowV , v ) , nowV = v ;
        Xor( LCA ) ;
        ans[tim] = nowans ;
        Xor( LCA ) ;
    }
    for( int i = 1 ; i <= Q ; i ++ )
        if( ans[i] ) printf( "%lld\n" , ans[i] ) ;
}

inline void read_( int &x ){
    x = 0 ;
    char ch = getchar() ;
    while( ch < '0' || ch > '9' ) ch = getchar() ;
    while( ch >='0' && ch <='9' ) x = ( x << 1 ) + ( x << 3 ) + ch - '0' , ch = getchar() ;
}

int main(){
    scanf( "%d%d%d" , &N , &M , &Q ) ;
    for( int i = 1 ; i <= M ; i ++ ) read_( V[i] ) ;
    for( int i = 1 ; i <= N ; i ++ ) read_( W[i] ) ;
    for( int i = 1 , u , v ; i < N ; i ++ ){
        read_( u ) , read_( v ) ;
        In( u , v ) ; In( v , u ) ;
    }
    for( int i = 1 ; i <= N ; i ++ ) read_( candy[i] ) ;
    for( int i = 1 , opt , x , y ; i <= Q ; i ++ ){
        read_( opt ) , read_( x ) , read_( y ) ;
        if( opt == 0 )
            m[++mcnt] = ( Modifies ){ x , y , candy[x] , i } , candy[x] = y ;
        else
            q[++qcnt] = ( Queries ){ x , y , i } ;
    }
    m[mcnt+1].tim = 0x3f3f3f3f ;
    for( int i = mcnt ; i ; i -- )
        candy[ m[i].pos ] = m[i].pre ;
    init() ;
    solve() ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值