说在前面
啊,终于了解掉了自己想要A掉糖果公园的心愿
虽然之前已经写了一道更难的树上莫队题:BZOJ4129 Haruna`s Breakfast
果然还是觉得A掉糖果公园才舒服啊=w=
(听说A一次糖果公园,后面会有二十几个pending,为什么me后面只了几个….不服气)
UPD at 2018.1.11
才发现糖果公园是自己的第200道题,截图留念一下qvq
题目
题目大意
给出一棵树,节点有各自的颜色(点权均不超过10万),再给出两个数组v[],w[]
定义一条链的权值为:所有链上出现过的颜色的
v[color]⋅∑i=1totw[i]
之和,其中v[color]表示color颜色对应的权值,tot表示颜色出现次数
现在需要维护以下操作:
1. 1 u v:询问u到v路径的权值
2. 0 u x:把u号点颜色改为x
输入输出格式
输入格式:
第一行三个整数N,M,Q,表示节点个数,颜色种类数,询问个数
第二行M个整数,表示各个颜色的权值
第三行N个整数,表示w[]数组
接下来N-1行,每行两个整数u,v,描述一条树边
再接下来Q行,每行三个整数type,u,v,描述一个操作
输出格式:
对于每个询问操作,输出答案
解法
裸的树上带修改莫队…
如果会树上分块,又曾经写过树上莫队、带修改莫队,数据范围再小一点,这道题就是一眼题
然后去看一看数据范围,嗯,带修改莫队不可做
然后再去看一看时限,嗯,还是带修改莫队吧hhhhh
(OS:10万的数据范围,考场上谁会想得到这题的正解居然是带修改莫队呢= =?强行
N53
以及200秒的时限,心疼评测姬)
具体做法:
关于「树上分块」,参见 BZOJ1089 王室联邦
关于「树上莫队」,参见 SPOJ COT2
关于「带修改莫队」,参见 BZOJ2120 数颜色
下面是自带大长度的代码
/**************************************************************
Problem: 3052
User: Izumihanako
Language: C++
Result: Accepted
Time:90662 ms
Memory:20884 kb
****************************************************************/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
long long ans[100005] ;
int N , M , Q , tp , head[100005] ;
int V[100005] , W[100005] , candy[100005] , mcnt , qcnt ;
int Bsiz , Btot , bel[100005] , fa[18][100005] , dep[100005] ;
struct Modifies{
int pos , val , pre , tim ;
}m[100005] ;
struct Queries{
int u , v , tim ;
bool operator < ( const Queries &A ) const {
return bel[u] < bel[A.u] ||
( bel[u] == bel[A.u] && bel[v] < bel[A.v] ) ||
( bel[u] == bel[A.u] && bel[v] == bel[A.v] && tim < A.tim ) ;
}
}q[100005] ;
struct Path{
int pre , to ;
}p[200005] ;
void In( int t1 , int t2 ){
p[++tp].pre = head[t1] ;
p[ head[t1] = tp ].to = t2 ;
}
int sta[100005] , topp ;
void dfs( int u ){
int las = topp ;
for( int i = head[u] ; i ; i = p[i].pre ){
int v = p[i].to ;
if( v == fa[0][u] ) continue ;
dep[v] = dep[u] + 1 ;
fa[0][v] = u , dfs( v ) ;
if( topp - las >= Bsiz ){
Btot ++ ;
while( topp != las ) bel[ sta[topp--] ] = Btot ;
}
}
sta[++topp] = u ;
}
void get_ST(){
for( int i = 1 ; i <= 17 ; i ++ )
for( int j = 1 ; j <= N ; j ++ )
fa[i][j] = fa[i-1][ fa[i-1][j] ] ;
}
int Lca( int u , int v ){
if( dep[u] < dep[v] ) swap( u , v ) ;
int t = dep[u] - dep[v] , x = 0 ;
while( t ){
if( t & 1 ) u = fa[x][u] ;
t >>= 1 ; x ++ ;
}
if( u == v ) return u ;
for( int i = 17 ; i >= 0 ; i -- )
if( fa[i][u] != fa[i][v] )
u = fa[i][u] , v = fa[i][v] ;
return fa[0][u] ;
}
void init(){
Bsiz = pow( N , 2.0 / 3.0 ) ;
dfs( 1 ) ; fa[0][1] = 1 ;
get_ST() ;
if( topp ){
Btot ++ ;
while( topp ) bel[ sta[topp--] ] = Btot ;
}
sort( q + 1 , q + qcnt + 1 ) ;
}
bool vis[100005] ;
int candy_cnt[100005] ;
long long nowans ;
void Erase_ans( int u ){
nowans -= 1LL * W[ candy_cnt[candy[u]] ] * V[ candy[u] ] ;
candy_cnt[candy[u]] -- ;
}
void Insert_ans( int u ){
candy_cnt[candy[u]] ++ ;
nowans += 1LL * W[ candy_cnt[candy[u]] ] * V[ candy[u] ] ;
}
void Xor( int u ){
vis[u] ^= 1 ;
if( vis[u] == false ) Erase_ans( u ) ;
else Insert_ans( u ) ;
}
void Modify( int u , int x ){
if( vis[u] ) Erase_ans( u ) ;
candy[u] = x ;
if( vis[u] ) Insert_ans( u ) ;
}
void Move( int u , int v ){
if( dep[u] < dep[v] ) swap( u , v ) ;
while( dep[u] > dep[v] ){
Xor( u ) ;
u = fa[0][u] ;
}
while( u != v ){
Xor( u ) ; Xor( v ) ;
u = fa[0][u] , v = fa[0][v] ;
}
}
void solve(){
int nowU = 1 , nowV = 1 , T = 1 ;
for( int i = 1 ; i <= qcnt ; i ++ ){
int u = q[i].u , v = q[i].v , tim = q[i].tim , LCA = Lca( u , v ) ;
while( m[T].tim < q[i].tim ){
Modify( m[T].pos , m[T].val ) ;
T ++ ;
}
while( m[T-1].tim > q[i].tim ){
Modify( m[T-1].pos , m[T-1].pre ) ;
T -- ;
}
Move( nowU , u ) , nowU = u ;
Move( nowV , v ) , nowV = v ;
Xor( LCA ) ;
ans[tim] = nowans ;
Xor( LCA ) ;
}
for( int i = 1 ; i <= Q ; i ++ )
if( ans[i] ) printf( "%lld\n" , ans[i] ) ;
}
inline void read_( int &x ){
x = 0 ;
char ch = getchar() ;
while( ch < '0' || ch > '9' ) ch = getchar() ;
while( ch >='0' && ch <='9' ) x = ( x << 1 ) + ( x << 3 ) + ch - '0' , ch = getchar() ;
}
int main(){
scanf( "%d%d%d" , &N , &M , &Q ) ;
for( int i = 1 ; i <= M ; i ++ ) read_( V[i] ) ;
for( int i = 1 ; i <= N ; i ++ ) read_( W[i] ) ;
for( int i = 1 , u , v ; i < N ; i ++ ){
read_( u ) , read_( v ) ;
In( u , v ) ; In( v , u ) ;
}
for( int i = 1 ; i <= N ; i ++ ) read_( candy[i] ) ;
for( int i = 1 , opt , x , y ; i <= Q ; i ++ ){
read_( opt ) , read_( x ) , read_( y ) ;
if( opt == 0 )
m[++mcnt] = ( Modifies ){ x , y , candy[x] , i } , candy[x] = y ;
else
q[++qcnt] = ( Queries ){ x , y , i } ;
}
m[mcnt+1].tim = 0x3f3f3f3f ;
for( int i = mcnt ; i ; i -- )
candy[ m[i].pos ] = m[i].pre ;
init() ;
solve() ;
}