[BZOJ4731][UOJ#267]-魔法小程序-分治(FWT)思想

说在前面

佩服那些用时短的提交……
(卡常失败蹲墙角


题目

BZOJ4731传送门
UOJ#267传送门

题目大意

现在定义了一种变换:
给出一个数组a[]和一个数组b[],其中a表示每一位的进制(如a[]=2,3,3表示,第一位2进制,第二位和第三位都是3进制)
变换:c[i]=b[j]  aji,其中b[]和c[]长度相同

现在给出a[]和c[],请输出一个合法的b[]
a的长度不超过1e4;b,c的长度不超过1e6;保证1e9内有解

输出输出格式

输入格式:
第一行一个整数M,表示a[]的长度
接下来一行M个正整数,表示a[]
第三行一个整数N,表示c[]的长度
接下来一行N个正整数,表示c[]

输出格式:
格式同上,第三、四行输出b[]


解法

其实就是一个按位分治的思想
如果理解了FWT,做这个题就很简单了
关于分治思想,可以参考me这一篇文章里的fast transform的部分,这里me就懒得打了….


下面是自带大常数的代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

int N , M , ws , remN ;
long long a[10005] , c[2000005] ;

void preWork(){
    int tmp = M + 1 ; M = 0 ;
    for( int i = 1 ; i <= tmp ; i ++ )
        if( a[i] > 1 ) a[++M] = a[i] ;
    int t = N ; ws = 1 ;
    while( true ){
        if( t < a[ws] ) break ;
        else t /= a[ws] , ws ++ ;
    } N = a[ws] = t + 1 ;
    for( int i = 1 ; i < ws ; i ++ ) N *= a[i] ;
}

void dfs( int lf , int rg , int w ){
    int siz = ( rg - lf + 1 ) / a[w] , i , j , ed ;
    for( i = a[w] - 1 , ed = rg ; i >= 0 ; i -- , ed -= siz ){
        if( i ) for( j = 0 ; j < siz ; j ++ )
            c[ed-j] -= c[ed-j-siz] ;
        if( w > 1 ) dfs( ed - siz + 1 , ed , w - 1 ) ;
    }
}

void solve(){
    dfs( 0 , N - 1 , ws ) ;
    printf( "%d\n" , remN ) ;
    for( int i = 0 ; i < remN ; i ++ ) printf( "%lld " , c[i] ) ;
}

template< typename T >
inline void read_( T &x ) {
    int fix = 1 ;
    x = 0 ; char ch = getchar() ;
    while( ch < '0' || ch > '9' ){
        if( ch == '-' ) fix = -1 ;
        ch = getchar() ;
    } while( ch >= '0' && ch <= '9' ) x = (x<<1) + (x<<3) + ch - '0' , ch = getchar() ;
    x *= fix ;
}

int main(){
    read_( M ) , printf( "%d\n" , M ) ;
    a[M+1] = 100000000 ;
    for( int i = 1 ; i <= M ; i ++ )
        read_( a[i] ) , printf( "%lld " , a[i] ) ;
    puts( "" ) ;
    read_( N ) , remN = N ;
    for( int i = 0 ; i < N ; i ++ ) read_( c[i] ) ;
    preWork() ; solve() ;
}
阅读更多
版权声明:转载嘛....也不是不可以(故作沉思),记得带上me的ID啊qwq https://blog.csdn.net/Izumi_Hanako/article/details/79956203
个人分类: FFT-NTT-FWT-FMT
上一篇[BZOJ2754]-[SCOI2012]喵星球上的点名-AC自动机+树状数组
下一篇[UOJ#310]-黎明前的巧克力-FWT的可加性
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭