说在前面
状态不是很好啊…
一个小细节WA了好久都没有查出来
题目
题目大意
A
A
和 在玩游戏
给出一个
n
n
个节点的树,叶子节点有初始权值,其余节点的权值为儿子中个数最多的那个权值。如果根节点权值为 则
A
A
胜出,否则 胜出。
叶子节点的权值为
0,−1,−2
0
,
−
1
,
−
2
中的一个。
A
A
可以花一单位时间将一个 变为
−1
−
1
,而
B
B
可以花一单位时间把 变为
−2
−
2
现在给定初始局面,询问
B
B
是否有必胜策略。若 可以胜出,还需要输出第一步
B
B
可行的操作点编号
范围:
保证:所有非叶节点,儿子个数为奇数(即保证可以选出较多的)
输入输出格式
输入格式:
第一行一个整数
n
n
表示点数
接下来每行第一个数字 ,若
ai≤0
a
i
≤
0
则表示该节点是一个叶子节点,
ai
a
i
是其权值
否则
ai
a
i
为一个正奇数,接下来
ai
a
i
个数字为该节点的儿子
输出格式:
如果无必胜策略,输出NIE
否则第一行输出TAK
c
c
,其中
c
c
表示第一步可行操作点数
接下来一行从小到大输出第一步可行操作点,行末无空格
解法
可能是博弈题做多了,一直在想如何花最少的时间,拿到最多的收益
然而这题的收益很难评估…也不能做背包
然后去看了题解,发现是一个sabi题…
对于每个节点,如果说它的儿子里, 的个数等于
−2
−
2
的个数,那么这个节点相当于一个
0
0
不然,这个节点相当于较多的那一个
考虑正确性:如果 的个数等于
−2
−
2
的个数,那么谁先把儿子中的一个
0
0
改变 ,谁就占有了这个节点,因为另一种数字始终无法比先占领的多。另一种情况类似,只需要保持优势即可
那么关于输出方案
首先如果根节点是 ,那么第一步选啥都必胜
如果根节点是
0
0
,那么第一步可以是选中根节点下的某个 ,也可以是选中根节点下某个「儿子中
2
2
的个数 的个数」的
−1
−
1
的某个
0
0
儿子。前者正确性显然,对于后者,这样就可以把一个 变成
0
0
,后手进行操作最多追回一步,这样根节点仍然是
于是两遍dfs即可解决该题
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
bool ok[1005] , in[1005] ;
int N , tp , head[1005] , ori[1005] , flag[1005] , ans[1005] , top ;
struct Path{
int pre , to ;
} p[2005] ;
void In( int t1 , int t2 ){
p[++tp] = ( Path ){ head[t1] , t2 } ; head[t1] = tp ;
}
void dfs_chk( int u ){
int cnt[3] = { 0 , 0 , 0 } ;
for( int i = head[u] ; i ; i = p[i].pre ){
int v = p[i].to ;
dfs_chk( v ) , cnt[ flag[v] ] ++ ;
} if( !cnt[0] && !cnt[1] && !cnt[2] ) flag[u] = -ori[u] ;
else if( cnt[1] == cnt[2] ) flag[u] = 0 ;
else flag[u] = ( cnt[1] > cnt[2] ? 1 : 2 ) ;
if( cnt[1] == cnt[2] + 1 || !flag[u] ) in[u] = true ;
}
void dfs_ways( int u ){
for( int i = head[u] ; i ; i = p[i].pre ){
int v = p[i].to ;
if( in[v] ) dfs_ways( v ) ;
} if( ori[u] == 0 ) ok[u] = true ;
}
void solve(){
dfs_chk( 1 ) ;
if( flag[1] == 1 ) puts( "NIE" ) , exit( 0 ) ;
if( flag[1] == 0 ){
dfs_ways( 1 ) ;
for( int i = 1 ; i <= N ; i ++ )
if( ok[i] ) ans[++top] = i ;
} else for( int i = 1 ; i <= N ; i ++ )
if( ori[i] == 0 ) ans[++top] = i ;
printf( "TAK %d\n" , top ) ;
if( top ){
for( int i = 1 ; i < top ; i ++ ) printf( "%d " , ans[i] ) ;
printf( "%d" , ans[top] ) ;
}
}
int main(){
scanf( "%d" , &N ) ;
for( int i = 1 ; i <= N ; i ++ ){
scanf( "%d" , &ori[i] ) ;
for( int j = 1 , v ; j <= ori[i] ; j ++ )
scanf( "%d" , &v ) , In( i , v ) ;
} solve() ;
}