[BZOJ3722]-[PA2014 Final]Budowa-博弈决策

说在前面

状态不是很好啊…
一个小细节WA了好久都没有查出来


题目

BZOJ3722传送门

题目大意

A A B 在玩游戏
给出一个 n n 个节点的树,叶子节点有初始权值,其余节点的权值为儿子中个数最多的那个权值。如果根节点权值为 1 A A 胜出,否则 B 胜出。
叶子节点的权值为 0,1,2 0 , − 1 , − 2 中的一个。 A A 可以花一单位时间将一个 0 变为 1 − 1 ,而 B B 可以花一单位时间把 0 变为 2 − 2
现在给定初始局面,询问 B B 是否有必胜策略。若 B 可以胜出,还需要输出第一步 B B 可行的操作点编号

范围:n1000
保证:所有非叶节点,儿子个数为奇数(即保证可以选出较多的)

输入输出格式

输入格式:
第一行一个整数 n n 表示点数
接下来每行第一个数字 ai,若 ai0 a i ≤ 0 则表示该节点是一个叶子节点, ai a i 是其权值
否则 ai a i 为一个正奇数,接下来 ai a i 个数字为该节点的儿子

输出格式:
如果无必胜策略,输出NIE
否则第一行输出TAK  c   c ,其中 c c 表示第一步可行操作点数
接下来一行从小到大输出第一步可行操作点,行末无空格


解法

可能是博弈题做多了,一直在想如何花最少的时间,拿到最多的收益
然而这题的收益很难评估…也不能做背包
然后去看了题解,发现是一个sabi题…

对于每个节点,如果说它的儿子里,1 的个数等于 2 − 2 的个数,那么这个节点相当于一个 0 0
不然,这个节点相当于较多的那一个
考虑正确性:如果 1 的个数等于 2 − 2 的个数,那么谁先把儿子中的一个 0 0 改变 ,谁就占有了这个节点,因为另一种数字始终无法比先占领的多。另一种情况类似,只需要保持优势即可

那么关于输出方案
首先如果根节点是 2,那么第一步选啥都必胜
如果根节点是 0 0 ,那么第一步可以是选中根节点下的某个 0,也可以是选中根节点下某个「儿子中 2 2 的个数 +1=1 的个数」的 1 − 1 的某个 0 0 儿子。前者正确性显然,对于后者,这样就可以把一个 1 变成 0 0 ,后手进行操作最多追回一步,这样根节点仍然是 0

于是两遍dfs即可解决该题


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

bool ok[1005] , in[1005] ;
int N , tp , head[1005] , ori[1005] , flag[1005] , ans[1005] , top ;
struct Path{
    int pre , to ;
} p[2005] ;

void In( int t1 , int t2 ){
    p[++tp] = ( Path ){ head[t1] , t2 } ; head[t1] = tp ;
}

void dfs_chk( int u ){
    int cnt[3] = { 0 , 0 , 0 } ;
    for( int i = head[u] ; i ; i = p[i].pre ){
        int v = p[i].to ;
        dfs_chk( v ) , cnt[ flag[v] ] ++ ;
    } if( !cnt[0] && !cnt[1] && !cnt[2] ) flag[u] = -ori[u] ;
    else if( cnt[1] == cnt[2] ) flag[u] = 0 ;
    else flag[u] = ( cnt[1] > cnt[2] ? 1 : 2 ) ;

    if( cnt[1] == cnt[2] + 1 || !flag[u] ) in[u] = true ;
}

void dfs_ways( int u ){
    for( int i = head[u] ; i ; i = p[i].pre ){
        int v = p[i].to ;
        if( in[v] ) dfs_ways( v ) ;
    } if( ori[u] == 0 ) ok[u] = true ;
}

void solve(){
    dfs_chk( 1 ) ;
    if( flag[1] == 1 ) puts( "NIE" ) , exit( 0 ) ;

    if( flag[1] == 0 ){
        dfs_ways( 1 ) ;
        for( int i = 1 ; i <= N ; i ++ )
            if( ok[i] ) ans[++top] = i ;
    } else for( int i = 1 ; i <= N ; i ++ )
        if( ori[i] == 0 ) ans[++top] = i ;
    printf( "TAK %d\n" , top ) ;
    if( top ){
        for( int i = 1 ; i < top ; i ++ ) printf( "%d " , ans[i] ) ;
        printf( "%d" , ans[top] ) ;
    }
}

int main(){
    scanf( "%d" , &N ) ;
    for( int i = 1 ; i <= N ; i ++ ){
        scanf( "%d" , &ori[i] ) ;
        for( int j = 1 , v ; j <= ori[i] ; j ++ )
            scanf( "%d" , &v ) , In( i , v ) ;
    } solve() ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值