Windows下安装Anaconda5.3.1+Python3.8+TensorFlow2.13.0-CPU版本总结

本文详细介绍了如何在Windows系统上通过Anaconda安装Python3.8,切换源以加速TensorFlow2.13.0CPU版本的下载,以及如何创建和激活虚拟环境、安装JupyterNotebook和Keras,以及解决常见安装问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python3.8安装可以参考博文https://janus.blog.csdn.net/article/details/55274849 进行安装即可。

【1】Anaconda

清华的开源软件镜像站:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载,这里选择的是5.3.1版本。

在这里插入图片描述

然后正常安装就可以,安装路径这里选择的是E:\softinstall\Anaconda

安装后在Windows的开始菜单找到Anaconda Prompt并打开可以检测版本与环境信息。

base) C:\Users\Janus>conda --version
conda 4.5.11

(base) C:\Users\Janus>conda info --envs
# conda environments:
#
base                  *  E:\softinstall\Anaconda

也可以选择从官网下载最新版本,但是可能比较慢:https://www.anaconda.com/download/

在这里插入图片描述

这个官网下载是真的慢,花了蛮久下载了Anaconda3-2023.09-0-Windows-x86_64.exe,下面是百度云链接:

链接:https://pan.baidu.com/s/1IIyl5qVjCcUNrKzN8bZVvg?pwd=yyds 
提取码:yyds 

指定位置和python版本(建议以右键管理员身份运行):

在这里插入图片描述

conda create  --prefix D:\softinstall\Anaconda\envs\python38 python=3.8

# To activate this environment, use
#
#     $ conda activate D:\softinstall\Anaconda\envs\python38
#
# To deactivate an active environment, use
#
#     $ conda deactivate

【2】TensorFlow2.13.0CPU版本

TensorFlow 2.13.0版本需要Python版本: Requires: Python >=3.8

① 切换源

因为国外的网站下载速度很慢,所以先把anaconda的源换成清华镜像:

conda config --add channels  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64
conda config --add channels  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64
conda config --set show_channel_urls yes

注意哦,这里是http且最后加了win-64。

当然也可以直接修改anaconda的配置文件.condarc,改文件在家目录下我这里是C:\Users\Janus

channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64
  - defaults
show_channel_urls: true

可以通过如下命令窗口进行操作:

在这里插入图片描述

② 创建并激活环境

命令如下所示,当询问是否执行时,输入y(yes) 。

#创建环境
conda create --name python38 python=3.8

#激活环境
conda activate python38

#退出环境
conda deactivate

③ 在环境“python38”下安装TensorFlow

pip install tensorflow

#或者直接指定版本
pip install tensorflow==2.13.0

④ 查看TensorFlow版本

① 使用TensorFlow自带的版本查看功能

(python38) C:\Users\Janus>python
Python 3.8.18 (default, Sep 11 2023, 13:39:12) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> print(tf.version.VERSION)
2.13.0
>>> print(tf.__version__)
2.13.0
>>> exit()

这里表示安装的TensorFlow是2.13.0。

② 检查TensorFlow使用的Python版本

可以使用如下代码来确定正在使用哪个版本的Python:

import tensorflow as tf
print(tf.version.PYTHON_VERSION)

③ 使用命令行查看TensorFlow版本

可以使用pip show命令查看当前安装的TensorFlow版本:

(python38) E:\softinstall\Jupyter>pip show tensorflow

Name: tensorflow
Version: 2.13.0
Summary: TensorFlow is an open source machine learning framework for everyone.
Home-page: https://www.tensorflow.org/
Author: Google Inc.
Author-email: packages@tensorflow.org
License: Apache 2.0
Location: e:\softinstall\anaconda\envs\python38\lib\site-packages
Requires: tensorflow-intel
Required-by:

⑤ 测试Tensorflow

如下代码成功打印hello,tensorflow即说明成功。

import tensorflow as tf
tf.compat.v1.disable_eager_execution() 
hello = tf.constant('hello,tensorflow')
sess= tf.compat.v1.Session()
print(sess.run(hello))

【3】使用jupyter notebook

① 首先激活对应的conda环境

conda activate python38

② 安装ipykernel

在Anaconda 环境下优先使用conda install XXXX来安装包,如果不可以或者有特殊需求可采用pip install

(python38) C:\Users\Janus>conda install ipykernel
Solving environment: done


==> WARNING: A newer version of conda exists. <==
  current version: 4.5.11
  latest version: 23.10.0

Please update conda by running

    $ conda update -n base -c defaults conda



# All requested packages already installed.

③ 切换到编程文件保存的目录

默认在C盘,我这里是:E:\softinstall\Jupyter

(python38) C:\Users\Janus>E:

(python38) E:\>cd softinstall

(python38) E:\softinstall>cd Jupyter

④ 将环境写入notebook的kernel中

(python38) E:\softinstall\Jupyter>python -m ipykernel install --user --name python38 --display-name "Python (python38)"
Installed kernelspec python38 in C:\Users\Janus\AppData\Roaming\jupyter\kernels\python38

⑤ 打开jupyter

安装Anaconda后自带Jupyter Notebook。在anaconda命令行中执行 jupyter notebook 就可以。

(python38) E:\softinstall\Jupyter>jupyter notebook

在这里插入图片描述

浏览器页面选择Python(python38)的Kernel即可
在这里插入图片描述

【4】安装keras

安装之前,执行以下两个命令:

conda install mingw libpython

在这里插入图片描述

pip install theano

在这里插入图片描述
最后安装keras

pip install keras

【5】遇到的问题总结

① 执行脚本提示 No module named ‘tensorflow’

这里查看jupyter kernelspec list ,其地址指向一个包含kernel.json的文件夹,打开这个json文件,发现里面指向的python.exe仍然是python3.7。

(python38) C:\Users\Janus>jupyter kernelspec list
Available kernels:
  python3    E:\softinstall\Anaconda\share\jupyter\kernels\python3

重新安装Jupyter

conda install jupyter notebook

此外如果还需要什么环境比如pandas,那么在python38环境下安装即可,如canda install pandas

② No module named ‘matplotlib’

conda install  matplotlib

③ No module named ‘sklearn’

conda install scikit-learn

④ partially initialized module ‘charset_normalizer’ has no attribute ‘md__mypyc’ (most likely due to a circular import)

conda install chardet
#或者
pip install chardet

⑤ module ‘tensorflow.python.distribute.input_lib’ has no attribute ‘DistributedDatasetInterface’

因为TensorFlow 2.13.0(或者更高版本)中添加了 DistributedDatasetInterface 属性,解决办法是使用TensorFlow 2.12.0

### TensorFlow 2.13.0 安装教程 对于希望安装 TensorFlow 2.13.0 的用户而言,官方推荐通过 Python 虚拟环境来管理依赖关系,这有助于避免与其他软件包发生冲突。具体来说,可以利用 `venv` 或者 Anaconda 创建独立的运行环境。 #### 使用 pip 进行安装 为了确保 TensorBoard 版本TensorFlow 兼容,建议先创建一个新的虚拟环境并更新至最新版 pip 工具: ```bash python3 -m venv tensorflow_2_13_env source tensorflow_2_13_env/bin/activate pip install --upgrade pip ``` 接着可以直接指定版本安装 TensorFlow: ```bash pip install tensorflow==2.13.0 ``` 此命令会自动处理所有必要的依赖项,并安装适合当前系统的二进制文件[^1]。 ### 发行说明 TensorFlow 2.13.0 主要改进包括但不限于性能优化、新功能引入以及 API 变更等方面的内容。值得注意的是,在该版本中继续增强了 Keras 集成的支持力度,使得模型构建更加简便高效;同时修复了一些已知的安全漏洞和错误报告。有关完整的变更列表,请参阅官方发布的详细发行日志。 ### 使用文档 官方提供了详尽的指南帮助开发者快速上手 TensorFlow 2.x 系列产品。除了基础入门教程外,还涵盖了高级主题如分布式训练、自定义层设计等知识点的学习资源。用户可以通过访问官方网站获取最新的编程手册和技术文章支持。此外,活跃的社区论坛也是解决问题的好去处,这里聚集了许多经验丰富的实践者愿意分享自己的见解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流烟默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值