AIGC|stable diffusion 辅助服装设计

Stable Diffusion介绍

Stable Diffusion是一款开源AI绘画工具,

用户输入语言指令

即可自动生成各种风格的绘画图片

Stable Diffusion功能强大

生态完整、使用方便

支持大部分视觉模型上传

且可自己定制模型

支持各种尺寸的图片输出和局部调整。

在AIGC时代

个人可以借助Al工具实现生产力飞跃成为超级个体

服装行业也是如此

本课程将主要通过六个颠覆传统的前沿工作流

带来ai时代服装设计行业提高服装品牌创业者

和服装设计师个人生产力的道与法。

通过SD技术的一系列加持

你唯一需要的只是一张衣服的线稿图

对于商业化服装人来说,人工智能AI相当于人类共享大脑计划,一个会用人工智能的设计师,起码等于几个设计师的头脑与工作量,能够快速,精准的完成,可以做到降本生效,成为真正的生产力工具

你可以

#线稿图→实物图#

在这里插入图片描述

线稿来源Midjourney

工作流一:线稿图→实物图→AI模特试穿图

在这里插入图片描述

AI辅助全流程:

第一步:AI生成线稿图

第二步:AI渲染服装材质

第三步:AI模特试穿效果

实现AI在服装设计的全流程技术助力

工作流二:白坯样衣打版照片→材质图→AI模特试穿图

第一步:拍摄样衣白坯图

第二步:AI渲染服装材质、生成样式

第三步:AI模特展示效果

实现AI在服装生产全环节技术助力

工作流三:CLO虚拟模特→AI模特试穿图

第一步:CLO产出3D虚拟效果图(非课程内容)

第二步:AI增加衣服细节

第三步:AI模特定制变换

增加虚拟服装展示的多种可能和应用价值

#人台图→AI模特试穿图#

在这里插入图片描述

在这里插入图片描述

#单个衣服→AI模特试穿图#

在这里插入图片描述

这5个工作流的实现都离不开一个主要媒介

Stable Diffusion(以下简称为“SD”)

是一款开源的AI绘画引擎

相较于大家熟知的Midjourney而言

它可控性强、生态完整

但门槛相对较高

#配饰→AI模特试穿图#

配饰实物图来自网络

   **不止是服装可以获得Ai技术加持,耳环,项链,手提包等也同样可以,从无到为你搭配最适合的Ai模特。**

在这里插入图片描述

在这里插入图片描述

甚至时尚的手提包和鞋子!

在这里插入图片描述

以上手提包均由AI生成

#方便快捷 一键换装#

可能有人会有疑问:

为什么不使用更为出圈的 Midjourney?

Midjourney的强势在于创意,它出图效果精良,但难以控制,常常需要长时间出图“抽卡”才能抽到一张符合复杂要求的图,且Midjourney价格昂贵,并不适用真实的生产场景。

   **Stable Diffusion则不然,SD为免费软件,只要在电脑本地/云端部署环境,就能一直使用。而且Stable Diffusion允许用户自己上传模型,实现不同场景应用,同时它生态完整,集成多种超强插件,可以大幅减小AI出图的随机性和不可控性,极大缩短出图时间,提高生产力。**

以上是ai时代服装设计行业提高个人生产力的“道”,我们当然会教给大家详实的“法”。

  **对于一个ai小白来说,从安装部署的这第一步就会遇到困难,我们Al辅助服装设计前沿课将从Al工具安装配置傻瓜化、相关理论知识形象化、蒙板抠图方法多样化、controlnet出图可控化、lora选用配比美观化,这五大环节循序渐进,保姆式、全流程解决你可能遇到的语言障碍、配置困难、技术鸿沟、细节问题!**

在这里插入图片描述

面向对象是哪些人?

希望应用AI展示技术降本增效的服装商家、创业者

希望掌握全新技能提高效率的时尚摄影行业从业者

希望用AIGC突破瓶颈的服装设计师

紧跟前沿技术丰富留学\考研\作品集的学生

我们还为每一位选择Al辅助服装设计前沿课的学员准备了一份超全资料包(见底部)帮助大家快速学习AI之“法”。

这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!
在这里插入图片描述

引言 随着人工智能技术的不断进步,人工智能生成内容(AIGC,Artificial Intelligence Generated Content)已经渗透到多个行业中,其中电影与影视制作领域的应用尤为显著。从剧本创作到角色设计,从动画生成到特效制作,AIGC正在以其独特的技术优势,极大地提高电影制作的效率,并且推动创作流程的创新。 在这篇文章中,我们将深入探讨AIGC如何在电影与影视制作中发挥作用,包括剧本创作、角色设计、动画生成和特效制作等多个方面。同时,我们将展示一些实际代码示例,帮助读者理解如何在具体的电影制作过程中应用AIGC技术。  一、AIGC在剧本创作中的应用  1.1 剧本创作的传统模式与挑战 剧本创作是电影制作中最为基础但又最具挑战性的部分之一。一个好的剧本需要深入的情感表达、复杂的情节构建和生动的角色塑造,这些都需要创作者具备高度的创造力与写作技巧。然而,剧本创作不仅是时间密集型的工作,而且经常会遇到瓶颈,如情节发展不顺、角色关系难以塑造等问题。  1.2 AIGC如何协助剧本创作 随着自然语言处理(NLP)和生成式模型的迅速发展,AIGC技术能够协助剧本创作团队从多个维度提升创作效率。 • 情节生成与建议:AI可以根据给定的主题、风格和关键元素生成剧本的初步情节或对话。这不仅能够为编剧提供灵感,还能有效帮助编剧突破创作瓶颈。 • 情感分析与剧本优化:AI可以对剧本内容进行情感分析,帮助创作者理解情节的情感走向,并给出优化建议。 • 角色对话与互动生成:利用大型语言模型(如OpenAIGPT系列),AI能够生成角色之间自然流畅的对话,甚至为某些特定场景提供脚本。 代码示例:使用GPT-3生成剧本对话 1 import openai 2 3 # 设置OpenAI API密钥 4 openai.api_key = "your-openai-api-key" 5 6 # 提供剧本的情节背景 7 prompt = """ 8 You are a screenwriter. Write a dialogue between two characters, Alice and Bob, who are stranded on a desert island. Alice is optimistic, while Bob is more pessimistic. They have been surviving for weeks, and tensions are starting to rise. 9 """ 10 11 # 调用GPT-3生成剧本对话 12 response = openai.Completion.create( 13 model="gpt-3.5-turbo", 14 prompt=prompt, 15 max_tokens=500 16 ) 17 18 # 输出生成的对话 19 print(response.choices[0].text.strip()) 上述代码使用OpenAI的API调用生成一个简短的剧本对话。通过给定角色、情节和情感的背景,AI能够生成符合主题的对话内容。编剧可以根据这些内容进行修改与扩展,形成完整的剧本草稿。  1.3 未来的剧本创作:AI辅助的协同创作 随着AI模型的不断改进,未来的剧本创作可能将进入一个全新的阶段:AI与编剧的协同创作。编剧可以与AI共同工作,AI不仅是一个工具,还是一个创作伙伴,帮助创作者探索不同的情节走向、人物命运和对话风格,从而实现更高效、更创新的创作过程。  二、AIGC在角色设计中的应用  2.1 传统角色设计的挑战 角色设计是电影与影视制作中至关重要的部分。一个成功的角色不仅要具有鲜明的个性,还需要符合剧情的需求,并且能够与观众产生共鸣。传统的角色设计通常需要经历大量的草绘制、讨论和修改等流程,既费时又费力。  2.2 AIGC如何协助角色设计 AIGC技术,特别是在计算机视觉和深度学习领域的进展,已经开始改变传统角色设计的方式。AI可以根据文本描述、剧本要求或风格指引自动生成角色的外观、服装和面部表情。 • 自动生成角色外观:通过像生成模型(如DALL·E、Stable Diffusion等),AIGC可以根据给定的描述(例如“一个未来感十足的女性战士”)自动生成多种设计风格的角色像。 • 角色面部表情与动作生成:AIGC还可以生成角色的面部表情、身体姿态以及动作序列,帮助设计师更好地表现角色的情感和行动。 • 个性化与多化设计:AI能够生成不同种族、文化、性别的角色设计,提供更高的创作自由度和多性,推动影视作品的全球化创作。 代码示例:使用DALL·E生成角色设计 1 import ope
03-13
<think>好的,我需要回答用户关于AIGC在电影与影视制作中的应用,特别是剧本创作和角色设计的技术细节和代码示例。首先,我需要回顾用户提供的引用内容,看看是否有相关引用可以支持回答。 用户提供的引用有三个:[1]提到AIGC项目的开发环境,包括Python和深度学习框架;[2]提到影视动画中数学美学的应用,涉及剧本、角色设计等;[3]解释AIGC的定义和应用领域,包括电影剧本编写。这些引用可以作为支持材料。 接下来,我需要组织回答的结构,确保符合用户的要求:结构清晰,分步骤解决问题,真实可靠。同时,需要包含技术细节和Python代码示例。 首先,剧本创作方面,可以使用自然语言处理模型如GPT-3生成剧本。需要解释技术原理,比如transformer架构,然后提供代码示例,可能使用Hugging Face的transformers库生成文本。引用[3]提到AIGC用于剧本编写,可以在此处引用。 其次,角色设计方面,可能涉及生成对抗网络(GAN)或扩散模型生成角色像。需要说明GAN的工作原理,然后给出使用PyTorch或TensorFlow构建GAN的代码片段。引用[2]提到角色设计中的数学美学,可以结合这一点,引用数学方法如风格迁移中的损失函数计算,可能涉及矩阵运算或优化算法,如梯度下降。 另外,用户要求代码示例。需要确保代码正确,并且使用正确的格式,如Python代码块。例如,生成剧本可以使用pipeline调用预训练模型,生成角色设计可能展示GAN的结构。 还要注意数学公式的格式,行内公式用$...$,独立公式用$$...$$。例如,在风格迁移中,内容损失和风格损失的计算可能涉及公式,如内容损失$L_{content} = \frac{1}{2} \sum_{i,j} (F_{ij} - P_{ij})^2$,这需要正确使用LaTeX语法。 同时,需要生成相关问题,用户提到的三个相关问题,需要与AIGC在影视制作中的应用相关,例如模型选择、数学方法、实际挑战等。 最后,检查引用是否正确添加,例如在提到剧本生成时引用[3],在角色设计时引用[2],开发环境引用[1]。 总结步骤: 1. 剧本创作的技术细节(NLP模型,transformer)和代码示例。 2. 角色设计的技术细节(GAN,扩散模型)和代码示例。 3. 数学方法的应用,如风格迁移中的损失函数。 4. 正确引用提供的引用源。 5. 生成相关问题。</think>### AIGC在电影与影视制作中的应用解析 #### 一、剧本创作中的技术实现 1. **技术原理** 使用自然语言处理(NLP)模型(如GPT-3、BERT)生成剧本草稿或对话片段。核心依赖Transformer架构的注意力机制,其公式可表示为: $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ 其中$Q$、$K$、$V$分别代表查询、键、值矩阵,$d_k$为维度。 2. **代码示例(基于Hugging Face Transformers)** ```python from transformers import pipeline # 初始化文本生成管道 generator = pipeline("text-generation", model="gpt2-medium") # 生成剧本片段 prompt = "在一个未来的世界,人工智能掌控了所有艺术创作..." generated_text = generator(prompt, max_length=200, num_return_sequences=1) print(generated_text[0]['generated_text']) ``` 此代码通过预训练GPT-2模型自动扩展输入提示,生成连贯的剧本内容[^3]。 --- #### 二、角色设计中的生成技术 1. **技术原理** 使用生成对抗网络(GAN)或扩散模型(如Stable Diffusion)生成角色原型。GAN的损失函数包含生成器$G$和判别器$D$的对抗目标: $$ \min_G \max_D \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D(G(z)))] $$ 2. **代码示例(基于PyTorch的GAN框架)** ```python import torch import torch.nn as nn # 定义生成器 class Generator(nn.Module): def __init__(self, latent_dim=100, img_shape=(3, 128, 128)): super().__init__() self.model = nn.Sequential( nn.Linear(latent_dim, 256), nn.LeakyReLU(0.2), nn.Linear(256, 512), nn.BatchNorm1d(512), nn.Linear(512, np.prod(img_shape)), nn.Tanh() ) def forward(self, z): return self.model(z).view(-1, 3, 128, 128) # 生成角色草 latent_dim = 100 generator = Generator(latent_dim) z = torch.randn(1, latent_dim) # 随机噪声输入 generated_image = generator(z) ``` 此代码生成128x128像素的角色草,适用于初步概念设计[^2]。 --- #### 三、数学美学的应用 在风格迁移中,内容损失$L_{\text{content}}$和风格损失$L_{\text{style}}$的结合优化是关键: $$ L_{\text{total}} = \alpha L_{\text{content}} + \beta L_{\text{style}} $$ 其中$\alpha$、$\beta$为权重系数,通过反向传播调整生成像的特征矩阵[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值