- 图像识别:主要是常见的分类问题。输入图片到神经网络,输出为当前样本属于每个类别的概率。通常选取概率最大的作为样本的预测结果。
- 目标检测:通过算法检测出图片中常见物体的大致位置,通常用边界框去表示,并分类出边界框中物体的类别信息。通常的方法有one-stage 和 two-stage..。主要区别在于是否分为两阶段,(是否先产生区域建议框,再进行分类和回归)。
- 语义分割:像素级的分类,分析每个像素点的分类,但并不区分同一类别中不同的对象。
- 实例分割:目标检测和语义分割的结合。实例分割相对于目标检测,是对每个像素点进行分类。实例分割解决方法可以归为两种,自底向上和自上向下。(先语义分割再目标检测。。先目标检测再语义分割)
- 全景分割:语义分割和实例分割的结合。全景分割相对于实例分割,增加了对背景等的分割。
在计算机视觉方面,通常认为三大顶级会议分别是:CVPR,ICCV,ECCV。
1,ICCV(IEEE International Conference on Computer Vision),名字越简单,经常越厉害。通常是每两年举行一次。最近一次即是2019年在韩国首尔举行,在中国,2005年在北京举行。会议的论文会被 EI 检索。
2,CVPR(IEEE Conference on Computer Vision and Patte