数据处理四之平均温度

该博客讨论了如何根据给定的整数数组和目标差值限制,调整每个城市的月平均气温,以使相邻两个月份的温差不超过目标值,同时计算最小调整代价之和。文章提供了多个城市的气温数据,并展示了调整后的结果。
摘要由CSDN通过智能技术生成
  1. 数据生成逻辑
import java.io.{File, FileWriter}

import org.apache.spark.util.random

import scala.util.Random


object DealDataExample4_1 {
  val random = new Random()
  val arr = Array("北京","上海","广州","深圳","天津","重庆","南京")

  /**
    * 随机生成城市
    * @return
    */
  def city():String={
    //随机获取城市
    arr(random.nextInt(7))
  }

  /**
    * 随机生成温度
    * @return
    */
  def temp():Double={
    val tm:Double = (random.nextInt(999)+2000)*0.01
    tm.formatted("%.2f").toDouble
  }
  def mouth():String={
    val mth = (random.nextInt(11)+1).toString
    mth.concat("月份")
  }
  def main(args: Array[String]): Unit 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值