【Java】设计一个支持10W QPS的评论中台,你会怎么设计?

一、问题解析

在B站,UP主每天都会发布海量的视频、动态、专栏等内容,随之而来的是弹幕和评论区的各种讨论。

播放器中直接滚动播放的弹幕,如同调味剂,重在提升视频观看体验;

而点进评论区,相对而言评论文本更长,内容的观点、形式都更丰富,更像是饭后甜点。

随着业务不断发展,B站的评论系统逐渐组件化、平台化;

通过持续演进架构设计,管理不断上升的系统复杂度,从而更好地满足各类用户的需求。

评论的基础功能模块是相对稳定的。

  1. 发布评论:支持无限盖楼回复。
  2. 读取评论:按照时间、热度排序;显示评论数、楼中楼等。
  3. 删除评论:用户删除、UP主删除等。
  4. 评论互动:点赞、点踩、举报等。
  5. 管理评论:置顶、精选、后台运营管理(搜索、删除、审核等)。

结合B站以及其他互联网平台的评论产品特点,评论一般还包括一些更高阶的基础功能:

  1. 评论富文本展示:例如表情、@、分享链接、广告等。
  2. 评论标签:例如UP主点赞、UP主回复、好友点赞等。
  3. 评论装扮:一般用于凸显发评人的身份等。
  4. 热评管理:结合AI和人工,为用户营造更好的评论区氛围。

7.1 总体的架构设计

评论系统 中台,从总体的架构上来区分,分为:

(1)接入层

(2)服务层

(3)异步任务层

(4)cache层

(5)DB层

7.2 接入层架构 reply-interface

reply-interface是评论系统的接入层,主要服务于两种调用者:

一是客户端的评论组件,

二是基于评论系统做二次开发或存在业务关联的其他业务后端。

面向移动端/WEB场景,设计一套基于视图模型的API,利用客户端提供的布局能力,接入层负责组织业务数据模型,并转换为视图模型,编排后下发给客户端。

面向服务端场景,接入层设计的API需要体现清晰的系统边界,最小可用原则对外提供数据,同时做好安全校验和流量控制。

接入层整个业务数据模型组装,分为两个步骤:

一是服务编排,

二是数据组装。

服务编排拆的架构为:

(1)对服务进行分层,分为若干个层级,

(2)前置依赖通过流水线调用,

(3)同一层级的可以并发调用,结构性提升了复杂调用场景下的接口性能下限;

(4)针对不同依赖服务所提供的SLA不同,设置不同的降级处理、超时控制和服务限流方案,保证少数弱依赖抖动甚至完全不可用情况下评论服务可用。

SLA一般指服务级别协议。服务级别协议是指提供服务的企业与客户之间就服务的品质、水准、性能等方面所达成的双方共同认可的协议或契约。

7.3 服务层架构

7.3.1 评论管理服务层reply-admin

评论管理服务层,为多个内部管理后台提供服务。

运营人员的数据查询具有:

  1. 组合、关联查询条件复杂;
  2. 刚需关键词检索能力;
  3. 写后读的可靠性与实时性要求高等特征。

此类查询需求,ES几乎是不二选择。

但是由于业务数据量较大,需要为多个不同的查询场景建立多种索引分片,且数据更新实时性不高。

因此,我们基于ES做了一层封装,提供统一化的数据检索能力,并结合在线数据库刷新部分实时性要求较高的字段。

7.3.2 评论基础服务 reply-service 架构设计

评论基础服务层,专注于评论功能的原子功能,例如:

  • 查询评论列表
  • 删除评论等。

这一层的特点是:

  • 较少做业务逻辑变更的,
  • 极高的可用性
  • 极高性能吞吐。

这一层采用了多种高性能方案:

  • 多级缓存
  • 布隆过滤器
  • 热点探测等。

7.3.3 异步任务层reply-job 架构设计

异步任务层,主要有两个职责:

  1. 为原子的业务操作操作,提供异步协助

与reply-service协同,为评论基础功能的原子化实现做架构上的补充。

  1. 异步削峰处理

为 长耗时/高吞吐的调用, 做异步化/削峰处理

职责1:提供异步协助

为原子的业务操作操作,提供异步协助, 最典型的案例就是缓存的更新。

一般采用Cache Aside模式,先读缓存,再读DB;

Cache Aside模式下的缓存的重建策略:就是读请求未命中缓存穿透到DB,从DB读取到内容之后反写缓存。

这一套流程对外提供了一个原子化的数据读取功能。

但由于部分缓存数据项的重建代价较高,比如评论列表。

为啥呢?

由于列表是分页的,缓存重建时会启用预加载,也就是要多加载几页,

如果短时间内大量请求缓存未命中,并且多个服务节点的同时重建缓存,容易造成DB抖动。

解决方案是啥?

利用消息队列+reply-job ,实现单个评论列表异步重建,只重建一次缓存。

另外呢,reply-job还作为数据库binlog的消费者,执行缓存的更新操作。

职责2:异步削峰处理

与reply-interface协同,为 长耗时/高吞吐的调用,做异步化/削峰处理

诸如评论发布等操作,基于安全/策略考量,会有非常重的前置调用逻辑。

对于用户来说,这个长耗时几乎是不可接受的。同时,时事热点容易造成发评论的瞬间峰值流量。

因此,reply-interface在处理完一些必要校验逻辑之后,会通过消息队列送至reply-job异步处理,包括送审、写DB、发通知等。

那么异步处理后用户体验是如何保证的呢?

首先是当次交互,返回最新数据。

C端的发评接口会返回展示新评论所需的数据内容,客户端据此展示新评论,完成一次用户交互。

其次,控制延迟时长,如果太长则进行预警和调优

若用户重新刷新页面,因为发评的异步处理端到端延迟基本在2s以内,此时所有数据已准备好,不会影响用户体验。

7.3.4 消息队列的保证有序

利用了消息队列的「有序」特性,将单个评论区内的发评串行处理,避免了并行处理导致的一些数据错乱风险。

一个有趣的问题是,早年间评论显示楼层号,楼层号实际是计数器,且在一个评论区范围内不能出现重复。

因此,这个楼层发号操作必须是在一个评论区范围内串行的(或者用更复杂的锁实现),否则两条同时发布的评论,获取的楼层号就是重复的。

而分布式部署+负载均衡的网关,处理发评论请求是无法实现这种串行的,因此需要放到消息队列中处理。

7.4 数据存储架构

7.4.1 结构化模型设计

结合评论的产品功能要求,评论需要至少两张表:

(1)首先是评论表,主键是评论id,关键索引是评论区id;

(2)其次是评论区表,主键是评论区id,平台化之后增加一个评论区type字段,与评论区id组成一个”联合主键“。

(3)评论内容表. 由于评论内容是大字段,且相对独立、很少修改,因此独立设计第3张表。主键也是评论id。

评论表和评论区表的字段主要包括4种:

  1. 关系类,包括发布人、父评论等,这些关系型数据是发布时已经确定的,基本不会修改。
  2. 计数类,包括总评论数、根评论数、子评论数等,一般会在有评论发布或者删除时修改。
  3. 状态类,包括评论/评论区状态、评论/评论区属性等,评论/评论区状态是一个枚举值,描述的是正常、审核、删除等可见性状态;评论/评论区属性是一个整型的bitmap,可用于描述评论/评论区的一些关键属性,例如UP主点赞等。
  4. 其他,包括meta等,可用于存储一些关键的附属信息。

评论回复的树形关系,如下图所示:

以评论列表的访问为例,我们的查询SQL可能是(已简化):

  1. 查询评论区基础信息:SELECT * FROM subject WHERE obj_id=? AND obj_type=?
  2. 查询时间序一级评论列表:SELECT id FROM reply_index WHERE obj_id=? AND obj_type=? AND root=0 AND state=0 ORDER BY floor=? LIMIT 0,20
  3. 批量查询根评论基础信息:SELECT * FROM reply_index,reply_content WHERE rpid in (?,?,...)
  4. 并发查询楼中楼评论列表:SELECT id FROM reply_index WHERE obj_id=? AND obj_type=? AND root=? ORDER BY like_count LIMIT 0,3
  5. 批量查询楼中楼评论基础信息:SELECT * FROM reply_index,reply_content WHERE rpid in (?,?,...)

7.4.2 分库分表架构

评论系统对数据库的选型要求,有两个基本且重要的特征:

  1. 必须有事务;
  2. 必须容量大。

一开始,B站采用的是MySQL分表来满足这两个需求。MySQL分库分表数据量起来之后,原来的MySQL分表架构很快到达存储瓶颈。

提示:
mysql 不停服在线扩容实际非常复杂,很多公司选择停服切换, 估计B站为了不停服, 或者不愿意发生停服的风险, 选择了 专门的商用 分布式 TiDB, 毕竟这个是花了钱的。

于是从2020年起,我们逐步迁移到TiDB,从而具备了在线水平扩容能力。

7.4.3 高并发写入架构,TPS提升了10倍以上

面对10Wqps的并发写入超大规模吞吐量,做了如下优化:

方案一:内存聚合+ 批量写入评论区评论计数的更新,先做内存合并再更新,可以减少热点场景下的SQL执行条数;评论表的插入,改成批量写入。

方案二:核心逻辑和非核心异步化,为核心操作瘦身

非数据库写操作的其他业务逻辑,拆分为前置和后置两部分,

其他业务逻辑从数据写入主线程中剥离,交由其他的线程池并发执行。

总之,采用新的高并发写入架构之后,性能得到极大提升。

写入架构调整之后,系统的并发处理能力有了极大提升,同时支持配置并行度/聚合粒度,在吞吐方面具备更大的弹性,热点评论区发评论的TPS提升了10倍以上。

7.5 缓存层架构

7.5.1 数据的缓存模型架构

主要有3项缓存:

  1. subject,对应于「查询评论区基础信息」,

redis string类型,value使用JSON序列化方式存入。

  1. reply_index,对应于「查询xxx评论列表」,

redis sorted set类型。

member是评论id,score对应于ORDER BY的字段,如floor、like_count等。

  1. reply_content,对应于「查询xxx评论基础信息」

存储内容包括同一个评论id对应的reply_index和reply_content表的两部分字段。

7.5.2 缓存的一致性架构

缓存的一致性依赖binlog刷新,主要两个要点:

  1. 消息队列,保证 同一个评论区内有序

binlog投递到消息队列,分片key选择的是评论区,保证单个评论区和单个评论的更新操作是串行的,消费者顺序执行,保证对同一个member的zadd和zrem操作不会顺序错乱。

  1. 采用删除缓存而非直接更新的方式

程序主动写缓存和binlog刷缓存,都采用删除缓存而非直接更新的方式,避免并发写操作时,特别是诸如binlog延迟、网络抖动等异常场景下的数据错乱。

7.5.3 缓存击穿解决方案

那大量写操作后读操作缓存命中率低的问题如何解决呢?

读缓存的时候, 可以利用 锁的机制,进行同步控制,防止缓存击穿。

7.5.4 热点探测架构

除了写热点,评论的读热点也有一些典型的特征:

  1. 由于大量接口都需要读取评论区基础信息,存在读放大,因此该操作是最先感知到读热点存在的。
  2. 由于评论业务的下游依赖较多,且多是批量查询,对下游来说也是读放大。此外,很多依赖是体量相对小的业务单元,数据稀疏,难以承载评论的大流量。
  3. 评论的读热点集中在评论列表的第一页,以及热评的热评。
  4. 评论列表的业务数据模型也包含部分个性化信息。

在读取评论区基础信息阶段探测热点,并将热点标识传递至服务层;

服务层实现了页面请求级的热点本地缓存,感知到热点后即读取本地缓存,然后再加载个性化信息。

热点探测的实现基于单机的滑动窗口+LFU,那么如何定义、计算相应的热点条件阈值呢?

首先,我们进行系统容量设计,列出容量计算的数学公式,主要包括各接口QPS的关系、服务集群总QPS与节点数的关系、接口QPS与CPU/网络吞吐的关系等;

然后,收集系统内部以及相应依赖方的一些的热点相关统计信息,通过公式,计算出探测数据项的单机QPS热点阈值。

最后通过热点压测,来验证相应的热点配置与代码实现是符合预期的。

7.6 高可用架构

包括:

(1)缓存降级与DB降级

(2)同城读双活 + 双机房独立部署 架构

(3)副本数据延迟优化架构

(4)限流熔断策略的优化

7.6.1 缓存降级与DB降级

基础服务层集成了多级缓存,在上一级缓存未命中或者出现网络错误后,降级至下一级缓存,

缓存没有命中,就降级到DB,保证系统的的可用性。

7.6.2 同城读双活 + 双机房独立部署 架构

评论系统是一个同城读双活+ 双机房独立部署 的架构。

DB 和 redis 均支持多副本,具备水平扩容的弹性。

7.6.3 双机房独立部署 :

数据库与缓存均是双机房独立部署的,通过 db-proxy,或者 db-redis进行访问

7.6.3.1 副本数据延迟优化架构

双机房架构场景下,存在跨机房数据延迟问题,

采用如下的策略解决:

  • 入口层切流
  • 应用层补偿
  • 跨机房重试

尽可能保证极端情况下, 用户没有延迟感。

7.6.3.2 限流熔断策略的优化

为了尽可能 保证系统可用, 在功能层面,做了级别划分:

把依赖划分为强依赖(如审核)、弱依赖(如粉丝勋章)。

首先,在如果强依赖出现异常,下坚决限流熔断,尽可能 保证 强依赖的可用性。

另外,对于弱依赖,通过超时控制、请求预过滤、优化调用编排, 持续优化提升非核心功能的可用性,

7.7 重点:Redis 的双机房部署方案

双机房部署redis该怎么做 ?

顺着这个文章, 给大家 把双机房部署redis 方案说一下。

采用 redis-cluster-proxy + redis cluster的架构方案。

redis cluster是redis的官方集群方案,但是他要求客户端自己做重定向,

redis-cluster-proxy 是redis的官方集群代理,经过这个proxy的代理后,连接redis集群就和连接单机redis一样了。

7.7.1 proxy+cluster架构

架构说明:

1、redis-cluster采用了同城双活架构,

其中,图中的AZ1和AZ2表示为可用区1、可用区2,

主节点(AZ1)按3主3从部署,备节点(AZ2)作为Cluster的6从,整个集群为3主9从;

2、单个master节点发生故障,redis集群自动感知并进行选主,完成主从切换,不影响业务正常使用;

3、应用服务连接所有Redis集群主从节点,以便自动感知主从切换情况。

其实只要连接到redis-proxy一个节点,应用服务便可以获取到集群信息,某些节点宕机后,客户端不会收到影响。

注意:单AZ1池资源出现问题,可以使用已准备好的脚本进行快速切换AZ2节点,完成集群恢复。

当然,上面的方案,可以考虑把master节点打散到两个AZ,避免集群超半数master节点宕机;

7.7.2 proxy+cluster架构问题

redis-proxy模式采用官方的redis-proxy+cluster模式,优点就是应用只需要连接proxy节点即可,不需要配置更多的node节点,生产环境proxy需要考虑高可用,而proxy也可以考虑用lvs+keepalived作为代理取代,

7.7.2.1 自动切换脚本

先使用cluster failover force命令执行强制切库,如果试了3次都不行,就使用cluster failover takeover更强制的切库,

手动故障转移是一种特殊的故障转移,通常在没有实际故障的情况下执行,我们希望将当前主节点与其中一个slave从节点(我们发送该命令的节点)交换(安全地,而不会有数据丢失的窗口)。

当前slave从节点通知主节点停止处理客户端的请求。
主节点回复slave从节点当前的 同步偏移量
slave从节点等待同步偏移量在slave从节点的侧匹配,以确保它已经处理了所有主节点的数据,然后继续。
slave从节点开始故障转移,从主节点的大多数主节点获取新的配置纪元值epoch,并广播新的配置。
旧的主节点接收配置更新:解除对客户端访问的阻止,并开始回复重定向消息,以便它们继续与新的主节点通信。

两个选项:

FORCE option: manual failover when the master is down 当主节点停止时手动故障转移
如果选择 FORCE选项,slave从节点不会与master主节点进行协商(master节点可能不可达),而是直接尽快从上文的故障转移步骤中的第4步开始做故障转移。当主节点不可达时, FORCE选项对于我们做手动故障转移非常有用。
TAKEOVER option: manual failover without cluster consensus 在集群数据不一致的场景下,也要人工故障转移
TACKOVER选项实现了 FORCE选项的所有实现,但是无需集群一致性验证来进行故障转移。

如果需要故障转移,在从节点上,可以输入以下命令

redis-cli-p7001-cCLUSTERFAILOVER

也可以结合linux上的定时器,使用脚本,配合使用

(1)探活脚本:redis_check.sh

(2)切换脚本:redis_task.sh

redis_check.sh脚本为检测redis节点是否存活

#!/bin/bash 
 
LOGDIR="/root"
BINDIR="/data/redis/7001/bin/redis-cli"
PASSWD="123456"
IPDIR="172.16.0.8:7001  172.16.0.8:7002 172.16.0.8:7003 172.16.0.8:7004  172.16.0.8:7005 172.16.0.8:7006"
DATE=`date`
LOGFILE=${LOGDIR}/logs
ERROR_LOG=${LOGDIR}/error.logs
 
cd${LOGDIR}
if [ ! -d bak ] ; then
        mkdir-p bak
fi
 
for i in$IPDIR
do
  port=${i#*:}
  ip=${i%:*}
 
  ALIVE=`$BINDIR -h $ip -p $port  PING`
  #ALIVE=`$BINDIR -h $ip -p $port -a $PASSWD PING`
 
  if [ "$ALIVE"=="PONG" ]; then
    echo"${DATE} Success: redis-cli -h $ip -p $port   PING $ALIVE" >> $LOGFILE2>&1
  else
    echo"${DATE} Failed:redis-cli -h $ip -p $port  PING $ALIVE " >> $ERROR_LOG2>&1
  fi
 
done

redis_task.sh为AZ1节点宕机后,执行脚本切换到AZ2节点

#!/bin/bash
 
IPMASTER="172.16.0.8:7001  172.16.0.8:7002 172.16.0.8:7003"
BINDIR="/data/redis/7001/bin/redis-cli"
PASSWD="123456"
DATE=`date`
LOGDIR="/root"
LOGFILE=${LOGDIR}/logs
ERROR_LOG=${LOGDIR}/error.logs
 
for i in$IPMASTER
do
  port=${i#*:}
  ip=${i%:*}
 
  status=`$BINDIR -h $ip -p $port -c cluster failover takeover`
  #status=` $BINDIR -h $ip -p $port -a $PASSWD -c cluster failover takeover`
 
  if [ "$status"=="OK" ]; then
    echo"${DATE} Success: $i 成功切换成master节点" >> $LOGFILE2>&1
  else
    echo"${DATE} Failed: $i 切换master节点失败 " >> $ERROR_LOG2>&1
  fi
 
done
7.7.2.2 机房故障的redis 故障转移过程

最开始cluster搭建方式如下图所示

在AZ1机房全部宕机后,我们需要通过执行cluster failover takeover命令将AZ2机房切换为Master,如下图所示:

在AZ1机房恢复正常之后,如下图所示:

7.8 安全性架构

7.8.1 一、数据安全

满足数据安全法要求,除了数据安全法所要求的以外,评论系统的数据安全还包括「合规性要求」。

评论数据合规,一方面是审核和风控,另一方面对工程侧的要求主要是「状态一致性」。

例如,有害评论被删除后,在客户端不能展现,也不能通过API等对外暴露。

这就对数据一致性,包括缓存,提出了较高要求。

在设计层面主要有两方面实践:

  1. 数据读写阶段均考虑了一致性风险,严格保证时序性。
  2. 对各类数据写操作,定义了优先级,避免高优先级操作被低优先级操作覆盖,例如审核删除的有害评论,不能被其他普通运营人员/自动化策略放出。
  3. 通过冗余校验,避免风险数据外泄。

例如评论列表的露出,读取sorted set中的id列表后,还需要校验对应评论的状态,是可见态才允许下发。

7.8.2 二、舆论安全

舆论安全问题更为泛化。

接口错误导致用户操作失败、关闭评论区、评论计数不准,甚至新功能上线、用户不满意的评论被顶到热评前排等问题均可能引发舆情问题。

在系统设计层面,我们主要通过几方面规避。

  1. 不对用户暴露用户无法处理和不值得处理的错误。

例如评论点赞点踩、某个数据项读取失败这一类的轻量级操作,不值得用户重试,此时告知用户操作失败也没有意义。系统可以考虑自行重试,甚至直接忽略。

  1. 优化产品功能及其技术实现,例如评论计数、热评排序等。

7.9 热评设计架构

7.9.1 什么是热评

早期的热评,实际就是按照评论点赞数降序。

后来衍生了更为复杂的热评:

既包括类似「妙评」这种用户推荐、运营精选且带logo突出展示的产品形态,
也包括各类热评排序算法,且热评排序算法应用场景也不仅局限于评论主列表的热度序,
还包括楼中楼(外露子评论)、动态外露评论等。

热评排序逻辑一般包括点赞数、回复数、内容相关、负反馈数、“时间衰退因子”、字数加权、用户等级加权等等。

咬文嚼字来说,我们对「热」的理解,大致分为几个阶段:

  1. 阶段1 :点赞高,就代表热度高。→ 解决热评的有无问题
  2. 阶段2 :基于用户正负样本投票的,加权平均高,就代表热度高。→ 解决高赞高踩的负面热评问题
  3. 阶段3:短时间内点赞率高,就代表热度高。→ 解决高赞永远高赞的马太效应
  4. 阶段4 :热评用户流量大,社区影响也大。→ 追求用户价值平衡, 要权衡社会价值观引导、公司战略导向、商业利益、UP主与用户的「情绪」等。
7.9.1.1 阶段1 :按照点赞绝对值排序

按照点赞绝对值排序,即要实现ORDER BY like_count的分页排序。

点赞数是一个频繁更新的值,MySQL,特别是TiDB,由于扫描行数约等于OFFSET,因此在OFFSET较大时查询性能特别差,很难找到一个完美的优化方案。

此外,由于like_count的分布可能出现同一个值堆叠多个元素,比如评论区所有的评论都没有赞,

我们更多依赖redis的sorted set来执行分页查询,这就要求 缓存命中率非常高

7.9.1.2 阶段2 :按照正负样本加权平均排序

按照正负样本加权平均的,即Reddit:威尔逊排序[6]

到这个阶段,数据库已经无法实现这样复杂的ORDER BY,热评开始几乎完全依赖sorted set这样的数据结构,预先计算好排序分数并写入。

于是在架构设计上,新增了feed-service和feed-job来支撑热评列表的读写。

Reddit最早成立于2005年,两名创始人是史蒂夫·霍夫曼和阿里克西斯·奥哈尼安,当时他们刚刚从弗吉尼亚大学毕业。他们的创业想法获得了美国知名创业孵化器Y Combinator的天使投资。

Reddit在美国的影响力非常大,它的信息展示形式像论坛,又像贴吧。是由不同版块下的帖子组成的交流平台,用户可以选择对帖子点击“上涨”或“下沉”来决定帖子的排名顺序。

Reddit在2009年公开过自己如何用威尔逊区间(wilson interval)对评论排序的,代码也开源过。

Wilson算法要点有两个:

  1. 把“所有正负反馈中正反馈的比例”作为对评论质量的考核指标。

在Reddit的情况中,正负反馈分别为点赞和反对。

简单来说,就是 正为点赞, 负为反对

  1. 对在冷启动过程中的评论(即正负反馈总数很少)做降权处理。

具体算法就是:假设观测到的正反馈率符合真实正反馈率的正态分布,求当前观测得到的正反馈率恰好位于95%置信上区间时的真实反馈率。

7.9.1.3 阶段3:按照点赞率排序

按照点赞率排序,需要实现点赞率的近实时计算。

点赞率=点赞数/曝光数,曝光的数据来源是客户端上报的展现日志,量级非常大,

可以说是一个写多读少的场景:只有重算排序的时候才会读取曝光数。

7.9.1.4 阶段4 :追求用户价值平衡

追求用户价值平衡,需要处理各种细分场景下的差异化需求。

热评排序与feed排序很像,但也有一点根本性差异:

feed排序是个性化的,每个人看到的都不相同,
但评论排序往往不会如此激进,一般来说会希望大家看到的评论排序都大致相同。

由于排序问题的解决方案是探索型的,因此系统设计层面需要提供更多元、更易扩展的工程化能力,

包括算法和策略的快速迭代、实验能力等,
并提升整个热评模块的可观测水平,监控完善、数据报表丰富、排序过程可解释等等。

在架构上,新增了strategy-service和strategy-job来承担这部分策略探索型业务。

此外,数据量级规模的增加,也对系统的吞吐能力提出了更高要求:

不管热评的算法如何变化,一般来说,热评列表都需要能够访问到全部评论,且基本维持相同的热评排序逻辑。

在评论数过百万甚至千万的评论区,热评排序的挑战点主要在于:

  1. 大key问题

例如单个sorted set过大,读写性能都受影响(时间复杂度的基数可以认为都是O(logN));全量更新时,还可能遇到redis pipeline的瓶颈。

  1. 实时性放大存储压力

多样化的数据源,对特征的导入与更新都提出了挑战,需要支持较丰富的数据结构,和尽可能高的写吞吐(想象一下曝光数作为排序特征的变态要求);

与推荐排序不同,热评排序是全排序,此时需要读取全部评论的全部特征,查询压力也会非常大。

这一阶段,我们仍然在持续优化,在工程落地层面尽可能还原理想的排序算法设计,保障用户的热评浏览体验。

目前形成的系统架构总体如下图所示:

图示的「评论策略层」,负责建立一套热评调控体系化能力,通过召回机制来实现想要的“balance“。

即先通过策略工程,召回一批应该沉底的不良评论或者应该进前排的优秀评论,然后在排序分计算阶段根据召回结果实现这样的效果。

这样做的好处是,可以保留一套通用的底层排序算法,然后通过迭代细分场景下的召回策略,来实现差异化评论排序的平衡。

召回策略的工程设计,按照分层设计的原则拆分为3个部分:

  1. 因子机

主要职责是维护策略所需的全部「因子」,包括一些已有的在线/离线数据,也包括为了策略迭代而需要新开发的流式的窗口聚合数据。

因子机的重难点是需要管理各种数据获取的拓扑关系,以及通过缓存来保护下游(数据提供方很难也不应该承受热评业务的巨大流量)。

所有的因子可以构成一个有向无环图,通过梳理依赖关系和推导计算,实现并发提效、减少冗余。

  1. 规则机

实现了一套声明式规则语法,可以直接引用因子机预定义的因子,结合各种逻辑算子构成一个规则表达式。

规则机执行命中后,会向下游传递预先声明的召回决策,例如排序提权。

  1. 召回处理中心

这一层的职责就是接收规则机返回的各种决策并执行,需要处理不同决策的优先级PK、不同规则的决策叠加作用、决策豁免等。

热评排序涉及的特征,是多数据源的,数据更新方式、更新频率、查询性能也天差万别。

因此我们针对数据源的特点做了多级缓存,通过多级冗余与跨级合并,提升了特征读取的稳定性与性能上限。

当然,其中的数据实时性、一致性、可用性,仍然处于一个动态权衡取舍的过程。

二、粉丝福利

最近很多同学问我有没有java学习资料,我根据我从小白到架构师多年的学习经验整理出来了一份80W字面试解析文档、简历模板、学习路线图、java必看学习书籍 、 需要的小伙伴 可以关注我
公众号:“ 灰灰聊架构 ”, 回复暗号:“ 159 ”即可获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值