数值计算方法的对象和特点
什么是计算方法
主要内容
数值逼近与数值微积分、数值代数、常微分方程的数值解法
特点
- 构造性方法:构造公式证明问题的存在性。
- 离散化方法:连续的数学问题上机必须离散化,例如:积分->求和,微分->差分方程。
- 递推化方法:将复杂的计算过程归结为简单过程的多次重复。
- 近似替代方法:计算机运算是有限次的,最终的结果往往只要求满足一定的精度即可。
误差
误差的来源
- 模型误差:误差来源于采用的数学模型本身。
- 观测误差:所使用的观测数据有误差。
- 截断误差(方法误差):有数学模型直接求解往往很困难,有时候需要使用一些方法来求解,也就差生了此类误差。
- 舍入误差:计算机字长有限引入的误差。
绝对误差、相对误差和有效数字
这几个名词都有数学上的精准的定义。但经常使用,我们都比较熟悉了,不再赘述。
数值计算中应注意的问题
误差分析在数值计算中是很重要的,每个步骤都有可能产生误差,注意以下问题,可以避免产生不必要的误差。
1.要使用数值稳定的算法
- 数值稳定:运算过程中的舍入误差不增长。因为计算过程中,每一步的误差都会影响到后一步计算,只有数值稳定的算法才能算出有价值的结果。
2.要避免两个相近的数相减
两个相近的数相减时往往会导致有效数字的损失。
3.要避免除数的绝对值远小于被除数的绝对值
这会导致商的绝对误差非常大。
4.要防止大数“吃掉”小数
两个数做加减运算时,如果阶数相差太多,小数就不会在加减法中发挥作用,就被“吃掉”了。需要对阶之后在计算。著名的例子有秦九韶算法。