数值计算方法 第一章 数值计算中的误差 笔记

数值计算中的误差

(1)误差的基本概念

误差的基本概念

实际问题的精确解与数值计算所得的近似解之间的差别称为误差

误差来源
(1)模型误差

实际问题与数学模型之差

(2)观测误差

观测所的

(3)截断误差

近似导致

(4)舍入误差

机器字长限制

(2)绝对误差与相对误差与有效数字

绝对误差

e(x*)=x-x*

绝对误差限

|e(x*)|=x-x*
x*- ε ⩽ \varepsilon\leqslant εx ⩽ \leqslant x*+ ε \varepsilon ε
x=x* ± ε \plusmn\varepsilon ±ε

用毫米刻度尺的米尺测量一长度为x,如读出的长度为x*=765mm,qi绝对误差限为0.5mm
准确值x: 764.5mm ⩽ \leqslant x$\leqslant 765.5 m m x 765.5mm\\ x 765.5mmx ∈ \isin [764.5mm,765.5mm]
x=765$\plusmn$0.5mm

相对误差

因为准确值x总是未知,所以一般取相对误差为:
e r ( x ∗ ) = e ( x ∗ ) x ∗ e_r(x^*)=\frac{e(x^*)}{x^*} er(x)=xe(x)

相对误差限(限->取模)

| e r ( x ∗ ) e_r(x^*) er(x)|=| e ( x ∗ ) x ∗ \frac{e(x^*)}{x^*} xe(x)| ⩽ \leqslant ε r \varepsilon_r εr

两种误差限的关系

ε r \varepsilon_r εr= ε ∣ x ∗ ∣ \frac{\varepsilon}{|x^*|} xε
ε \varepsilon ε=|x^*| ε \varepsilon ε

2 ≈ 1.414 \sqrt2\approx1.414 2 1.414 (1.41421356237310)
是经过四舍五入得到的近似值,则
绝对误差限 ε \varepsilon ε= 1 2 ∗ 1 0 − 3 \frac{1}{2}*10^{-3} 21103
相对误差限 ε r = 0.5 ∗ 1 0 − 3 1.414 ≈ 0.035 \varepsilon_r=\frac{0.5*10^{-3}}{1.414}\approx0.035 εr=1.4140.51030.035%

有效数字

2 = 1.41421356 \sqrt2=1.41421356 2 =1.41421356
( ∣ x − x ∗ ∣ ⩽ 1 2 ∗ 1 0 − 3 ) (|x-x^*|\leqslant\frac{1}{2}*10^{-3}) (xx21103) x ∗ = 1.414 x^*=1.414 x=1.414—有效数字4个
( ∣ x − x ∗ ∣ ⩽ 1 2 ∗ 1 0 − 7 ) (|x-x*|\leqslant\frac{1}{2}*10^{-7}) (xx21107) x ∗ = 1.4142136 x^*=1.4142136 x=1.4142136—有效数字8个

x=0.005800 ± \plusmn ± 1 2 ∗ 1 0 − 6 \frac{1}{2}*10^{-6} 21106表示近似值
x ∗ = 0.005800 x^*=0.005800 x=0.005800准确到小数点后6位,有4位有效数字

2 \sqrt2 2 =1.41421356237310……
x ∗ = 1.414213 x^*=1.414213 x=1.414213作为 2 \sqrt2 2 d的近似值,有几位有效数字?

∣ e ( x ∗ ) ∣ = ∣ x − x ∗ ∣ = 0.0000005623 … |e(x^*)|=|x-x^*|=0.0000005623… e(x)=xx=0.0000005623< 1 2 ∗ 1 0 − 5 \frac{1}{2}*10^{-5} 21105
准确到小数点后5为,有6位有效数字

为使 2 \sqrt2 2 的近似值的相对误差线小于0.1%,至少要取几位有效数字?
(用绝对误差限和有效数字的关系)
ε = ε r ∗ ∣ x ∣ < 20 ∗ 1 0 − 3 = 0.4 … ∗ 1 0 − 2 \varepsilon=\varepsilon_r*|x|<\sqrt{20}*10^{-3}=0.4…*10^{-2} ε=εrx<20 103=0.4102
0.5 ∗ 1 0 − 3 < 0.4 … ∗ 1 0 − 2 0.5*10^{-3}<0.4…*10^{-2} 0.5103<0.4102
需要准确到小数点后第3位,有4位有效数字

x表示成规范模式*

定理一:若x的近似值x*= ± 0. a 1 a 2 a n ∗ 1 0 m ( a 1   / = 0 ) \plusmn0.a_1a_2a_n*10^m(a_1\mathrlap{\,/}{=}0) ±0.a1a2an10m(a1/=0)有n位有效数字,则 1 2 a 1 \frac{1}{2a_1} 2a11为其相对误差限。
反之,若 x ∗ x^* x的相对误差限 ε r \varepsilon_r εr满足 ε r ⩽ 1 2 ( a 1 + 1 ) ∗ 1 0 − n + 1 \varepsilon_r\leqslant\frac{1}{2(a_1+1)}*10^{-n+1} εr2(a1+1)110n+1,则x至少有n位有效数字
实际上,使用的时候,通过绝对误差限中转

(3)数值计算中误差的传播

基本运算中的误差传播

用微分表示误差
Δ y ≈ d y = f ′ ( x ) d x \Delta{y}\approx{dy}=f\prime(x)dx Δydy=f(x)dx

绝对误差的传播

y = f ( x ) , 则 e ( y ∗ ) = f ( x ) − f ( x ∗ ) ≈ d f ( x ∗ ) = f ′ ( x ∗ ) e ( x ∗ ) y=f(x),则e(y^*)=f(x)-f(x^*)\approx{df(x^*)}=f\prime(x^*)e(x^*) y=f(x),e(y)=f(x)f(x)df(x)=f(x)e(x)
ε ( y ∗ ) ⩽ ∣ f ′ ( x ∗ ) ∣ ε ( x ∗ ) \varepsilon(y^*)\leqslant|f\prime(x^*)|\varepsilon(x^*) ε(y)f(x)ε(x)

y = f ( x 1 , x 2 , … , x n ) , f y=f(x_1,x_2,…,x_n),f y=f(x1,x2,xn),f在点 ( x 1 ∗ , x 2 ∗ , … , x n ∗ ) (x_1^*,x_2^*,…,x_n^*) x1,x2,,xn处可微, x i ∗ x_i^* xi x i x_i xi的近似值,则在这里插入图片描述

相对误差的传播

在这里插入图片描述

(4)和差积商的误差公式

在这里插入图片描述
在这里插入图片描述
即和,差的绝对误差限不超过各数的绝对误差限之和
积,商的相对误差限不超过各数的相对误差限之和
在这里插入图片描述
在这里插入图片描述

(5)算法的数值稳定性

稳定性:在算法的计算过程中,舍入误差在计算过程中不增长,则称算法是数值稳定的,否则称算法是数值不稳定的
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(6)数值计算中应注意的问题

  • 避免两个相近的数相减

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 避免大数吃小数的现象
    改变顺序,先对小的部分操作,就有可能最后不会被吃掉

  • 避免除数的绝对值远小于被除数的绝对值
    在这里插入图片描述
    当|y|<<|x|时,舍入误差可能增大很多

  • 要简化计算,减少运算次数,提高效率
    秦九韶算法

  • 选用数值稳定性好的算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐家小河沟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值