机器学习---集成学习

集成学习:

使成多个分类器模型,各自独立学习和做出预测;最后结合组合预测。防止过拟合或者欠拟合的问题.

Bagging:

随机采样数据(即样本有放回到原来数据集中)(结合其他强的机器学习模型:线性回归、逻辑回归、决策树等):结果可以提高大概2%,学习是并行执行的。

如果模型很复杂,选择学习Bagging进行集成学习。

API:

随机森林:

由(Bagging+决策树)组成,具有决策树所有的超参数。

Boosting:

用于降低偏差。随着学习的积累从弱到强的过程;将多个弱学习器组合成一个强学习器的集成方法;每个模型之间是互补的。学习顺序是串行

经典的Boosting方法:

  1. AdBoosting

  2. Gradient Boosting: 拟合没有拟合好的残差数据

  3. GBDT (Gradient Boosting decesion tree)

Stacking:

(跟Bagging类似)使用同一数据集,放在不同的模型上进行训练,最后将不同模型的结果进行整合。缺点是花费的时间代价比较大,但是可以提高精度。

多层Stacking

多个stacking层连接起来;进行模型训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值