机器学习
文章平均质量分 56
灰太狼家的小鸭子
物是人非事事休
展开
-
物流预测模型,使用决策树。
机器学习,模型训练。原创 2022-11-22 21:42:45 · 1069 阅读 · 1 评论 -
李宏毅机器学习作业1-PM2.5预测
李宏毅机器学习PM2.5作业原创 2023-01-30 16:15:04 · 957 阅读 · 0 评论 -
K折交叉验证
主要重要的是这一部分:对于训练集的划分(训练集,验证集)原创 2023-06-09 16:18:54 · 216 阅读 · 0 评论 -
metrics.accuracy_score 和metrics.roc_auc_score的计算
例如,在第一个阈值处,模型将所有的样本都预测为负例,因此FPR为0,而TPR也为0。在第二个阈值处,只有第一个样本的概率得分小于等于0.2,因此该样本被预测为负例,对于该样本,TPR为0/3=0,FPR为0/5=0。注意,最后一个阈值处的TPR为1,因为此时模型将所有样本都预测为正例。根据上述的FPR和TPR列表,我们可以计算ROC曲线下的面积(即ROC AUC)。之间的准确率,这个值在 0 到 1 之间,1 表示分类器完全正确,0 表示分类器完全错误。是用来计算分类模型的准确率的函数。原创 2023-06-09 16:15:48 · 1352 阅读 · 0 评论 -
sklearn中的ROC和AUC曲线(roc和auc曲线只是用于二分类问题。)
绘制的图像是TPR(真阳率) 和FPR(假阳率)之间的关系。原创 2023-03-21 08:57:12 · 815 阅读 · 0 评论 -
无监督学习---K-means算法和DBSCAN算法
只有特征值,没有目标值(聚类:划分类别)。对于一份没有标签的数据, 有监督算法就会无从下手, 聚类算法能够将数据进行大致的划分, 最终让每一个数据点都有一个固定的类别。算法分类:聚类k-means,降维算法;异常检测、可视化。原创 2023-03-19 17:07:07 · 681 阅读 · 0 评论 -
机器学习---降维算法
如果拿到的数据特征过于庞大, 一方面会使得计算任务变得繁重;另一方面, 如果数据特征还有问题, 可能会对结果造成不利的影响。降维是机器学习领域中经常使用的数据处理方法, 一般通过某种映射方法, 将原始高维空间中的数据点映射到低维度的空间中。两种经典的降维算法——线性判别分析和主成分分析。原创 2023-03-17 21:57:22 · 707 阅读 · 0 评论 -
sklearn.svm中LinearSVR(svm线性回归)、LinearSVC(svm线性分类)与SVC(svm分类)、SVR(svm回归)之间的区别
如果数据集是比较低维的数据时,低维数据信息有些少,这时可以将低维的数据映射为高维的数据进行模型的训练。用来实现线性的分类任务;用来实现线性的分类任务。可以用来实现非线性的分类任务,支持。可以用来实现非线性的回归任务,支持。rbf:高斯核函数(默认)可以添加多项式特征;可以添加多项式特征;poly:多项式核函数。原创 2023-03-17 20:56:08 · 2989 阅读 · 0 评论 -
sklearn中PolynomialFeatures多项式特征参数
degree:度数,决定多项式的次数。原创 2023-03-17 19:59:37 · 1763 阅读 · 0 评论 -
机器学习---KNN算法
kNN原创 2023-01-28 23:12:02 · 80 阅读 · 0 评论 -
人工智能基础知识
人工智能基础:分支:人工智能、机器学习、深度学习;主要分支:机器视觉CV(人脸识别)、自然语言处理NLP(语言识别、语义识别)和机器人;原创 2023-01-28 22:18:52 · 546 阅读 · 0 评论 -
机器学习---SVM
SVM支持向量机原创 2023-01-28 20:18:57 · 150 阅读 · 0 评论 -
机器学习---决策树
决策树算法原创 2023-01-27 23:13:10 · 121 阅读 · 0 评论 -
机器学习---集成学习
集成学习:使成多个分类器模型,各自独立学习和做出预测;最后结合组合预测。防止过拟合或者欠拟合的问题.原创 2023-01-27 22:38:29 · 121 阅读 · 0 评论