keras框架学习手册

本文是Keras框架的学习手册,涵盖了Tensorflow MNIST案例、Sequential模型的使用、函数式API,包括模型编译、训练、中间层输出获取、模型保存与加载等内容,深入解析Keras的模型构建和训练过程。
摘要由CSDN通过智能技术生成


Keras tutorialTensorflow mnist 案例导入数据包获取测试集和验证集的图像类别将训练集和验证集中的图像和标签合并⚖️ Keras基本构造Sequential顺序模型入门实例使用复杂一点的顺序模型添加网络层的方法指定输入数据的尺寸模型编译模型训练获取中间层的输出保存Keras模型函数式API入门例子多输入多输出模型共享网络层什么是层(节点)实例✴️ Keras常用函数网络层相关操作函数编译/评估模型/预测函数查看网络层信息? 关于Keras的一些概念Backend模型存入磁盘训练过程中的数据混洗

Keras tutorial

Tensorflow mnist 案例

导入数据包

    from tensorflow.examples.tutorials.mnist import input_data
    # 导入数据并且进行独热编码
    data = input_data.read_data_sets('data/MNIST', one_hot=True)
    # 打印训练集、测试集、验证集大小
    print("- Training-set:\t\t{}".format(len(data.train.labels)))
    print("- Test-set:\t\t{}".format(len(data.test.labels)))
    print("- Validation-set:\t{}".format(len(data.validation.labels)))

data.train.labels是一个列表,元素为各个图像对应的标签。


获取测试集和验证集的图像类别

    # 使用One-Hot编码,这意外每个标签是长为10的向量,除了一个元素之外,其他的都为零,于是元素1的索引即为图像的类别
    data.test.cls = np.argmax(data.test.labels, axis=1)
    data.validation.cls = np.argmax(data.validation.labels, axis=1)
    
    # 在测试集中的图像与对应的类别都是正确的
    # 获取测试集中前9个图像与对应的类别
    cls_true = data.test.cls[0:9]

将训练集和验证集中的图像和标签合并

    # 原始训练集和验证集合并到大的一个数组中
    combined_images = np.concatenate([data.train.images, data.validation.images], axis=0)
    combined_labels = np.concatenate([data.train.labels, data.validation.labels], axis=0)

⚖️ Keras基本构造

Sequential顺序模型

入门实例

Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺序模型,它由多个网络层线性堆叠。

创建一个顺序模型:

    from keras.models import Sequential
    model = Sequential()
    
    # 使用.add()函数来叠加模型的结构
    from keras.layers import Dense
    model.add(Dense(units=64, activation='relu', input_dim=100))
    model.add(Dense(units=10, activation='softmax'))
    
    # 使用.compile()函数来配置学习过程
    model.compile(loss='categorical_crossentropy', # 损失函数
                  optimizer = 'sgd', # 随机下降优化器
                  metrics = ['accuracy'])# 评价指标
               
    # 批量在训练集上进行迭代训练
    model.fit(x_train, y_train, epochs=5, batch_size=32)
    """
    你可以手动地将批次的数据提供给模型:
    model.train_on_batch(x_batch, y_batch)
    """              
    # 预测新数据 In one line of code!
    classes = model.predict(x_test, batch_size=128)
    
    # 评估模型性能 in one single line of code! 
    loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)

Warning:编译模型时必须指明损失函数和优化器,如果你需要的话,也可以自己定制损失函数。


使用复杂一点的顺序模型

添加网络层的方法

顺序模型是多个网络层的线性堆叠。可以使用网络层实例列表传递给Sequential构造器:


    from keras.models import Sequential
    from keras.layers import Dense, Activation
    
    model = Sequential([
        Dense(32, input_shape=(784,)),
        Activation('relu'),
        Dense(10),
        Activation('softmax'),
    ])

不过更加方便一点的方法是使用.add()函数将各层添加到模型中:

    model = Sequential()
    model.add(Dense(32, input_dim=784))
    model.add(Activation('relu'))

一些常见的网络结构:

    # Dropout层, Dense全连接层, 激活函数
    model = Sequential()
    # Dense(64) 是一个具有 64 个隐藏神经元的全连接层。
    # 在第一层必须指定所期望的输入数据尺寸:
    # 在这里,是一个 20 维的向量。
    model.add(Dense(64, activation='relu', input_dim=20))
    model.add(Dropout(0.5))

指定输入数据的尺寸

  • 传递一个 input_shape 参数给第一层。它是一个表示尺寸的元组 (一个整数或 None 的元组,其中 None 表示可能为任何正整数)。

模型需要知道它所期望的输入的尺寸。出于这个原因,顺序模型中的第一层(且只有第一层,因为下面的层可以自动地推断尺寸)

  • 某些 2D 层,例如 Dense,支持通过参数 input_dim 指定输入尺寸,某些 3D 时序层支持 input_dim 和 input_length 参数。
  • 如果你需要为你的输入指定一个固定的 batch 大小(这对 stateful RNNs 很有用),你可以传递一个 batch_size 参数给一个层。如果你同时将 batch_size=32 和 input_shape=(6, 8) 传递给一个层,那么每一批输入的尺寸就为 (32,6,8)。

下面的代码片段是等价的:

    model = Sequential()
    model.add(Dense
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DEROOCE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值