感受野

Receptive fields。在神经网络中的定义是每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小,用数学的语言是CNN中的某一层输出结果的一个元素对应输入层的一个映射。再通俗点的解释是,feature map上的一个点对应输入图上的区域。注意这里是输入图,不是原始图。好多博客写的都是原图上的区域,经过一番的资料查找,发现并不是原图。

举个例子,在maxpooling层中,如果它的kenerl size是2x2,输出结果中的每一个元素都是其对应输入的2x2的区域中的最大值,所以这一层的感受野大小就是2。其实感受野的大小是由kernel size和stride size一起决定的,公式是:

rfsize = f(out, stride, ksize) = (out - 1) * stride + ksize

计算时一般假定最后一层的感受野大小rfsize=1 ,以此倒推,以VGG16为例,从全连接层开始倒推,全连接层中一个元素的rfsize=1

pool5     : rfsize=f(1, 2, 2) = (1-1)*2+2=2
conv5_3: rfsize=f(2, 2, 2) = (2-1)*2+2=4
conv5_2: rfsize=f(4, 1, 3) = (4-1)*1+3=6
conv5_1: rfsize=f(6, 1, 3) = (6-1)*1+3=8
pool4     : rfsize=f(8, 2, 2) = (8-1)*2+2=16

其中out是指上一层感受野的大小。

感受野的计算:

参考文献:

https://zhuanlan.zhihu.com/p/22627224

https://www.jianshu.com/p/2b968e7a1715

https://blog.csdn.net/u010725283/article/details/78593410

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值