自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Man

  • 博客(210)
  • 收藏
  • 关注

原创 LLaMA Factory 简介

环境安装llamafactory-cli version # LLaMA-Factory 校验:如果您有更多需求,请安装对应依赖华为910B有32G和64G版本;英伟达 A800/H80080GB显存包含了所有经过预处理的本地数据集以及在线数据集。如果您希望使用自定义数据集,请务必在文件中添加对数据集及其内容的定义。目前我们支持Alpaca格式和ShareGPT格式的数据集。

2025-10-15 17:15:43 1035

原创 Transformer

是一个基于自注意力的序列到序列(变长)模型,与基于循环神经网络的序列到序列模型不同,其可以能够并行计算它包含编码器、解码器、编码器和解码器间的 Cross-Attention。

2025-05-03 21:12:55 946

原创 自注意力机制

在图像识别的时候,假设输入的图像大小都是一样的。但如果输入是一组向量,并且。不同位置输入同一单词。

2025-05-02 23:00:08 1336

原创 目标跟踪:Eigen 库简介

Eigen 是一个高效、灵活的 C++ 模板库,专注于线性代数运算,包括矩阵和向量的基本操作、数值解法、特征值计算、矩阵分解Eigen 是纯粹的模板库(不需要额外的编译), 只包含头文件,不依赖任何外部库,可移植性强,支持多种编译器和平台Eigen 具有非常高的性能,尤其在处理数值计算密集型的任务时能够充分利用 CPU 的 SIMD(单指令多数据)指令集(如等)来加速运算支持动态矩阵和静态矩阵,矩阵大小可在编译时确定,减小开销,语法直观, 接近数学表达。支持各种矩阵运算和数值分析算法支持。

2024-11-07 16:00:10 555

原创 使用谷歌/Edge浏览器将网页保存为静态网页

文件是一种多用途的网页文档格式,它可以将一个网页及其相关的资源(如图片、样式表和脚本)打包到一个单一的文件中,这种格式特别适用于离线浏览或发送网页快照。

2024-10-28 16:33:29 832

原创 目标跟踪:毫米波雷达简介

利用毫米波信号来探测和测量目标的雷达系统,工作在微波频段(毫米波是微波的一个子频段)探测的雷达,工作频段一般为,波长1~10mm,其他波段的电磁波包括:无线电、红外光、可见光、紫外线等它可以全天候工作,不受光线、恶劣天气等的影响毫米波雷达分类:按照信息维度分:3D:信号天线只在二维方向上排布,输出 X / Y/ V4D:水平与垂直方向上,都布置了天线,输出量:输出 X、Y、Z、V(加了高度信息短程毫米波雷达(SRR)、中程毫米波雷达(MRR)、远程毫米波雷达(LRR)

2024-09-22 22:15:28 975

原创 4、目标跟踪:轨迹管理

文章目录

2023-12-08 10:21:23 1027

原创 3、目标跟踪:数据关联

二分图的定义:二分图是能分成两组(假设是 U 和 V),其中 U 上的点不能相互连通,只能连去 V 中的点;V 中的点也不能相互连通,只能连去 U 中的点二分图在跟踪中的理解:可以把二分图理解为视频中连续两帧中的所有检测框,第一帧所有检测框的集合称为 U,第二帧所有检测框的集合称为 V,同一帧的不同检测框不会为同一个目标,所以不需要互相关联,相邻两帧的检测框需要相互联通,最终将相邻两帧的检测框尽量完美地两两匹配起来。

2023-12-07 16:21:40 1752

原创 12、pytorch 框架:评价指标

https://github.com/Lightning-AI/torchmetrics二、分类评价指标使用简介三、回归评价指标使用简介四、检测评价指标使用简介五、分割评价指标使用简介六、参考资料https://github.com/Lightning-AI/lightninghttps://github.com/Lightning-AI/torchmetrics

2023-11-15 16:55:11 2934

原创 13、Pytorch 模型训练加速

例如下面的代码, 其中张量最初在 CPU 内存中创建 , 然后被移动到 GPU 显存。不同, 它能避免不必要的数据拷贝, 将数据转换为张量, 并在可能的情况下共享底层数据和保留。函数在 GPU 和 CPU 之间传输数据。通过直接在 GPU 上创建张量, 可以。:可跨多个 GPU 或机器实现分布式训练, 从而显著地提高计算能力并缩短训练时间。该方法在处理深度学习任务中涉及大量GPU操作时特别有效。” 装饰现有函数, 之后可以在现有代码中继续使用原始函数名。如果不想进行显式替换, 也可以使用“

2023-10-23 18:08:53 698

原创 Windterm:跨平台终端神器

WindTerm 不仅开源免费,还跨平台,支持 Windows、Linux 和 macOS。

2023-07-06 10:08:45 4593

原创 14、Pytorch 大模型报错处理

【代码】Pytorch 大模型报错处理。

2023-06-15 17:29:26 2578

原创 4、Python 常见的内置函数

文章目录一、内置函数一览表二、输入输出2.1、input()2.2、print()三、输入输出四、输入输出五、输入输出六、输入输出七、输入输出八、输入输出九、输入输出十、输入输出十一、输入输出十二、输入输出十三、输入输出十四、输入输出十五、输入输出十六、输入输出十七、输入输出十八、输入输出待总结:异常处理:raise https://www.runoob.com/python3/python3-errors-execptions.html内置魔法方法和属性:Python内置属性和魔法方法

2023-05-01 22:14:06 238

原创 21、Python 进度条工具:tqdm

该模块的作用就是通过装饰任何可迭代的对象,使代码中的循环(loop)在运行过程中为用户展示进度条可以通过或来安装使用,官网效果图如下所示:tqdm 类简介。

2023-03-27 14:12:21 208

原创 20、Python 日志管理工具:logging

通过记录和分析日志可以了解一个系统或软件。,也可以在应用程序出现故障时。

2023-03-23 10:56:27 426 2

原创 22、Python 网络结构和超参数配置工具:yaml&yacs

深度学习调参过程中会遇到很多参数,为了完整保存一个项目的所有配置,推荐使用yaml工具进行配置(yaml标量(例如字符串,整数和浮点数),列表和关联数组(字典)yaml的基本语法特点为:大小写敏感缩进表示层级关系,不允许使用 tab,只允许使用空格,缩进的空格数不重要,只要相同层级的元素左对齐即可列表通过"-"表示,字典通过":"表示在同一个yaml文件中,可以用"---"来分段,这样可以将多个文档写在一个文件中注释使用"#"yacs。

2023-03-22 13:29:20 502

原创 19、Python 命令行解析工具:argparse

argparse是python自带的命令行参数解析模块,这个库可以让我们直接在命令行中就可以向程序中传入参数并让程序运行当你的代码需要频繁地修改参数的时候,使用这个工具可以将参数和代码分离开来,让你的代码更简洁,适用范围更广。

2023-03-20 14:28:32 985

原创 11、PyTorch 分布式训练

分布式数据并行(distributed data parallel),是通过多进程实现的。

2023-03-13 15:18:08 1683

原创 10、PyTorch Hook 函数与 CAM 类激活图

10、PyTorch Hook 函数与 CAM 类激活图。

2023-03-03 11:19:22 421

原创 6、目标跟踪:FairMOT

目标跟踪:FairMOT

2022-08-05 22:18:57 842

原创 5、目标跟踪:SORT & Deep SORT & StrongSort

目标跟踪:SORT & Deep SORT

2022-08-05 22:16:37 1420 1

原创 1、目标跟踪:简介

多目标追踪顾名思义就是跟踪视频画面中的多个目标,得到这些目标的运动轨迹(每一个目标分配一个 track id,这个 id在视频序列中具有唯一性);核心在于目标检测和数据关联,即在每一帧进行目标检测,再利用目标检测的结果来进行目标跟踪,后面一步一般称之为数据关联,数据关联更多依赖于手工特征提取(外观特征、运动特征、形状特征)基本原理:核心:轨迹处理和状态估计、关联问题(匈牙利匹配)、级联匹配、特征描述器。...

2022-08-05 22:13:47 638

原创 13、目标检测:YOLOv5

Activation:Mish/SiLU 激活函数。YOLOv5s 网络的深度如下图所示。YOLOv5s 网络的宽度如下图所示。相当于下采样,减少后续计算量。网络的深度和宽度设置。

2022-08-05 22:13:03 852

原创 7、目标检测:SSD 系列

的卷积核去处理已经融合的特征图(为了消除上采样的混叠效应),以生成最后需要的特征图。参考设置 3:通过 min_size 和 max_size 进行密集采样。,然后再进行一次反卷积操作(最近邻/双线性插值或可学习的方式)TDM 网络结构(类似 FPN)示例:只在最后一层做预测。参考设置 1:两个 min_size 进行密集采样;参考设置 2:两个 min_size 进行密集采样;构成自上而下和自下而上的特征金字塔。预测层的具体细节如下图所示。测试网络框架如下图所示。...

2022-08-05 22:11:44 229

原创 2、目标检测:数据集的生成(PASCAL VOC Format)

转 LMDB 代码示例。

2022-08-05 22:10:10 258

原创 2、目标跟踪:卡尔曼滤波状态估计与更新

卡尔曼滤波本质上是一个数据融合算法,将具有同样测量目的、来自不同传感器或模型、(可能)具有不同单位(unit)的数据融合在一起(一般使用精度较高的测量值对模型预测的结果进行修正)得到一个更精确的估计值:首先,根据模型上一时刻的值来估计当前时刻的状态,得到模型在当前时刻的先验估计值(prediction)然后,使用当前时刻传感器的测量值()来更正(update)这个估计值,得到当前时刻的最优估计值最后,根据当前时刻的最优估计值和观测矩阵H,得到观测空间的最优估计值。...

2022-08-05 22:09:11 1143 1

原创 ubuntu16.04 docker 和 nvidia-docker 的安装及 GPU 的调用

ubuntu16.04 docker 和 nvidia-docker 的安装及 GPU 的调用

2022-08-05 21:26:48 818 1

原创 darknet 框架的使用简介

darknet 框架的使用简介

2022-08-05 21:25:12 726

原创 监控相机简介

监控相机简介

2022-08-05 21:23:10 760

原创 8、OpenCV 基本图像操作(C++ 接口)

OpenCV 基本图像操作(C++ 接口)

2022-08-05 21:21:09 610 1

原创 7、OpenCV 基本数据类型(C++ 接口)

OpenCV 基本数据类型(C++ 接口)

2022-08-05 21:20:26 611

原创 6、Ubuntu 下通过源码安装 OpenCV(C++ 接口)

Ubuntu 下通过源码安装 OpenCV

2022-08-05 21:19:38 1270 1

原创 9、PyTorch 中 Tensorboard 的使用

Pytorch 中 Tensorboard 的使用

2022-08-05 21:15:53 4064

原创 Ubuntu 20.04 系统重装

Ubuntu 20.04 系统重装

2022-08-05 21:14:28 3295

原创 TensorFLow 模型在移动端的部署

TensorFLow 模型在移动端的部署

2022-08-05 21:13:05 587

原创 RAW 格式简介

RAW 格式简介

2022-08-05 21:12:12 5727

原创 OpenCL 学习

OpenCL 学习

2022-08-05 21:10:33 1022

原创 数据存储的大小端模式

数据存储的大小端模式

2022-08-05 21:05:31 400

原创 15、GCC/G++ 及动态库与静态库简介

GCC/G++ 及动态库与静态库简介

2022-08-05 20:54:21 1399

原创 CPU 及其加速库简介

CPU 及其加速库简介

2022-08-05 20:53:21 640

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除