Spark Shuffle FetchFailedException报错解决方案

原因分析

参考Spark RSS(Remote Shuffle Service),它存在的目的就是解决Spark Shuffle FetchFailedException这类问题。比如参考 降本增效利器!趣头条Spark Remote Shuffle Service最佳实践

  • Spark Shuffle Fetch过程存在大量的网络小包,现有的External Shuffle Service设计并没有非常细致的处理这些RPC请求,大规模场景下会有很多connection reset发生,导致FetchFailed,从而导致stage重算。
  • Spark Shuffle Fetch过程存在大量的随机读,大规模高负载集群条件下,磁盘IO负载高、CPU满载时常发生,极容易发生FetchFailed,从而导致stage重算。
    重算过程会放大集群的繁忙程度,抢占机器资源,导致恶性循环严重,SLA完不成,需要运维人员手动将作业跑在空闲的Label集群。
  • 计算和Shuffle过程架构不能拆开,不能把Shuffle限定在指定的集群内,不能利用部分SSD机器。
  • M*N次的shuffle过程:对于10K mapper,5K reducer级别的作业,基本跑不完。
  • NodeManager和Spark Shuffle Service是同一进程,Shuffle过程太重,经常导致NodeManager重启,从而影响Yarn调度稳定性。

Shuffle 解决办法

流传比较广的一篇解析 【Spark系列8】Spark Shuffle FetchFailedException报错解决方案

我实际是遇到过Spark Shuffle FetchFailedException,但是任务可以运行过去,所以以下方案都没用过,只是来看看备案。

  1. 减少shuffle数据

思考是否可以使用map side join或是broadcast join来规避shuffle的产生。

将不必要的数据在shuffle前进行过滤,比如原始数据有20个字段,只要选取需要的字段进行处理即可,将会减少一定的shuffle数据。

  1. SparkSQL和DataFrame的join,group by等操作(提供shuffle并发度)

通过spark.sql.shuffle.partitions控制分区数,默认为200,根据shuffle的量以及计算的复杂度提高这个值。

  1. Rdd的join,groupBy,reduceByKey等操作

通过spark.default.parallelism控制shuffle read与reduce处理的分区数,默认为运行任务的core的总数(mesos细粒度模式为8个,local模式为本地的core总数),官方建议为设置成运行任务的core的2-3倍。

  1. 提高executor的内存

通过spark.executor.memory适当提高executor的memory值

  1. 是否存在数据倾斜的问题

空值是否已经过滤?某个key是否可以单独处理?考虑改变数据的分区规则。

<think>好的,我现在要帮助用户解决Spark WordCount程序用Scala运行时出现的错误。首先,我需要考虑用户可能的错误场景。Spark的WordCount是一个常见的示例,但运行时错误可能由多种原因引起,比如依赖冲突、环境配置问题、代码错误或资源不足。 用户提到了Scala运行时错误,所以我要先想到版本兼容性问题。Spark的不同版本可能与特定版本的Scala不兼容。例如,如果用户用的是Spark 3.x,可能需要Scala 2.12,而旧版Spark可能用Scala 2.11。检查build工具(如Maven或sbt)中的Scala版本是否匹配是关键。 接下来,依赖冲突是常见问题,特别是当项目中有多个库依赖同一个库的不同版本时。比如用户提供的引用[1]中提到的Mesos依赖冲突问题,protobuf版本不一致导致错误。这种情况下,可能需要排除冲突的依赖或升级相关库的版本。用户需要检查他们的依赖树,看看是否有冲突的库,比如protobuf或其他库的不同版本。 然后,代码错误也是可能的。用户的WordCount代码可能有语法错误或API使用不当。例如,没有正确初始化SparkSession,或者RDD操作有误。建议用户检查代码结构,特别是是否正确创建了SparkContext或SparkSession,以及是否正确使用转换和动作操作。 资源配置问题也可能导致运行时错误。比如,内存不足或核心数配置不正确。用户需要检查Spark的配置参数,如executor内存、driver内存等,是否适合当前的环境。特别是在本地模式下,资源不足可能导致程序崩溃。 另外,用户的构建工具配置是否正确?比如Maven或sbt的配置文件中是否正确引入了Spark的相关依赖,并且scope是否正确。例如,引用[3]提到使用Maven的archetype来生成项目结构,如果依赖没有正确添加,会导致ClassNotFound错误。用户需要确认pom.xml或build.sbt中的依赖项,尤其是Spark core和Spark SQL的依赖,是否版本一致,并且与Scala版本匹配。 环境变量和路径问题也可能影响运行。例如,SPARK_HOME是否设置正确,或者提交应用程序时是否指定了正确的master URL,比如local[*]或其他集群管理器地址。 用户的错误信息可能包含具体的异常信息,比如ClassNotFoundException或NoSuchMethodError,这有助于定位问题。例如,引用[2]中的NoClassDefFoundError,通常是因为缺少依赖库或版本不对。用户需要根据错误信息中的类名,检查对应的依赖是否被正确引入,或者是否存在版本冲突。 最后,建议用户提供具体的错误日志,以便更准确地诊断问题。同时,可以尝试简化代码到最小可复现的例子,排除其他干扰因素。例如,先运行一个最简单的WordCount示例,确认基础环境是否正常,再逐步添加复杂逻辑,定位错误发生的位置。 总结可能的解决步骤:1. 检查Scala和Spark版本兼容性;2. 检查依赖冲突,使用Maven的dependency:tree分析;3. 确保代码正确,特别是Spark初始化和RDD操作;4. 验证资源配置和环境变量;5. 查看具体错误日志,针对性解决。</think>### Spark WordCount程序Scala运行时错误解决方案 #### 1. **依赖版本冲突排查** Spark程序常见的依赖冲突可能由Protobuf、Netty等库引起。例如Mesos旧版本依赖的Protobuf与Spark冲突[^1]: ```xml <!-- 检查pom.xml中mesos依赖版本 --> <dependency> <groupId>org.apache.mesos</groupId> <artifactId>mesos</artifactId> <version>0.18.0</version> <!-- 升级到兼容版本 --> </dependency> ``` 使用命令分析依赖树: ```bash mvn dependency:tree -Dincludes=com.google.protobuf ``` #### 2. **Scala与Spark版本匹配** 确保Scala编译版本与Spark支持的版本一致: ```xml <!-- 示例:Spark 3.x + Scala 2.12 --> <properties> <scala.version>2.12.15</scala.version> <spark.version>3.3.0</spark.version> </properties> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.12</artifactId> <version>${spark.version}</version> </dependency> ``` #### 3. **代码规范检查** WordCount典型实现(注意初始化与闭包处理): ```scala import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("WordCount").setMaster("local[*]") val sc = new SparkContext(conf) sc.textFile("input.txt") .flatMap(_.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) .saveAsTextFile("output") sc.stop() } } ``` **关键点**: - 使用`setMaster("local[*]")`指定本地模式 - 避免在RDD操作中使用外部未序列化对象 - 正确关闭`SparkContext` #### 4. **资
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值