/*
*Copyright (c) 2017,烟台大学计算机与控制工程学院
*All rights reserved.
*文件名称:.cpp
*完成日期:2017年11月30日
*版 本 号:v1.0
* 验证算法
/*
1、认真阅读并验证折半查找算法。请用有序表{12,18,24,35,47,50,62,83,90,115,134}作为测试序列,分别对查找90、47、100进行测试。
折半查找
#include <stdio.h>
#define MAXL 100
typedef int KeyType;
typedef char InfoType[10];
typedef struct
{
KeyType key; //KeyType为关键字的数据类型
InfoType data; //其他数据
} NodeType;
typedef NodeType SeqList[MAXL]; //顺序表类型
int BinSearch(SeqList R,int n,KeyType k)
{
int low=0,high=n-1,mid;
while (low<=high)
{
mid=(low+high)/2;
if (R[mid].key==k) //查找成功返回
return mid+1;
if (R[mid].key>k) //继续在R[low..mid-1]中查找
high=mid-1;
else
low=mid+1; //继续在R[mid+1..high]中查找
}
return 0;
}
int main()
{
int i,n=10;
int result;
SeqList R;
KeyType a[]= {1,3,9,12,32,41,45,62,75,77},x=75;
for (i=0; i<n; i++)
R[i].key=a[i];
result = BinSearch(R,n,x);
if(result>0)
printf("序列中第 %d 个是 %d\n",result, x);
else
printf("木有找到!\n");
return 0;
}
运行结果:
递归的折半查找算法
#include <stdio.h>
#define MAXL 100
typedef int KeyType;
typedef char InfoType[10];
typedef struct
{
KeyType key; //KeyType为关键字的数据类型
InfoType data; //其他数据
} NodeType;
typedef NodeType SeqList[MAXL]; //顺序表类型
int BinSearch1(SeqList R,int low,int high,KeyType k)
{
int mid;
if (low<=high) //查找区间存在一个及以上元素
{
mid=(low+high)/2; //求中间位置
if (R[mid].key==k) //查找成功返回其逻辑序号mid+1
return mid+1;
if (R[mid].key>k) //在R[low..mid-1]中递归查找
BinSearch1(R,low,mid-1,k);
else //在R[mid+1..high]中递归查找
BinSearch1(R,mid+1,high,k);
}
else
return 0;
}
int main()
{
int i,n=10;
int result;
SeqList R;
KeyType a[]= {1,3,9,12,32,41,45,62,75,77},x=75;
for (i=0; i<n; i++)
R[i].key=a[i];
result = BinSearch1(R,0,n-1,x);
if(result>0)
printf("序列中第 %d 个是 %d\n",result, x);
else
printf("木有找到!\n");
return 0;
}
运行结果:
2、认真阅读并验证分块查找算法。请用22,4,23,11,20,2,15,13,30,45,26,34,29,35,26,36,55,98,56, 74,61,90,80,96,127,158,116,114,128,113,115,102,184,211,243,188,187,218,195,210,279,307,492,452,408,361,421,399,856,523,704,703,697,535,534,739(共n=56个数据,每块数据个数s=8)作为数据表,自行构造索引表,分别对查找61、739、200进行测试。
分块查找
#include <stdio.h>
#define MAXL 100 //数据表的最大长度
#define MAXI 20 //索引表的最大长度
typedef int KeyType;
typedef char InfoType[10];
typedef struct
{
KeyType key; //KeyType为关键字的数据类型
InfoType data; //其他数据
} NodeType;
typedef NodeType SeqList[MAXL]; //顺序表类型
typedef struct
{
KeyType key; //KeyType为关键字的类型
int link; //指向对应块的起始下标
} IdxType;
typedef IdxType IDX[MAXI]; //索引表类型
int IdxSearch(IDX I,int m,SeqList R,int n,KeyType k)
{
int low=0,high=m-1,mid,i;
int b=n/m; //b为每块的记录个数
while (low<=high) //在索引表中进行二分查找,找到的位置存放在low中
{
mid=(low+high)/2;
if (I[mid].key>=k)
high=mid-1;
else
low=mid+1;
}
//应在索引表的high+1块中,再在线性表中进行顺序查找
i=I[high+1].link;
while (i<=I[high+1].link+b-1 && R[i].key!=k) i++;
if (i<=I[high+1].link+b-1)
return i+1;
else
return 0;
}
int main()
{
int i,n=25,m=5,j;
SeqList R;
IDX I= {{14,0},{34,5},{66,10},{85,15},{100,20}};
KeyType a[]= {8,14,6,9,10,22,34,18,19,31,40,38,54,66,46,71,78,68,80,85,100,94,88,96,87};
KeyType x=85;
for (i=0; i<n; i++)
R[i].key=a[i];
j=IdxSearch(I,m,R,n,x);
if (j!=0)
printf("%d是第%d个数据\n",x,j);
else
printf("未找到%d\n",x);
return 0;
}
运行结果:
3、认真阅读并验证二叉排序树相关算法。
(1)由整数序列{43,52,75,24,10,38,67,55,63,60}构造二叉排序树;
(2)输出用括号法表示的二叉排序树;
(3)用递归算法和非递归算法查找关键字55;
(4)分别删除43和55,输出删除后用括号法表示的二叉排序树。
#include <stdio.h>
#include <malloc.h>
typedef int KeyType;
typedef char InfoType[10];
typedef struct node //记录类型
{
KeyType key; //关键字项
InfoType data; //其他数据域
struct node *lchild,*rchild; //左右孩子指针
} BSTNode;
//在p所指向的二叉排序树中,插入值为k的节点
int InsertBST(BSTNode *&p,KeyType k)
{
if (p==NULL) //原树为空, 新插入的记录为根结点
{
p=(BSTNode *)malloc(sizeof(BSTNode));
p->key=k;
p->lchild=p->rchild=NULL;
return 1;
}
else if (k==p->key) //树中存在相同关键字的结点,返回0
return 0;
else if (k<p->key)
return InsertBST(p->lchild,k); //插入到*p的左子树中
else
return InsertBST(p->rchild,k); //插入到*p的右子树中
}
//由有n个元素的数组A,创建一个二叉排序树
BSTNode *CreateBST(KeyType A[],int n) //返回BST树根结点指针
{
BSTNode *bt=NULL; //初始时bt为空树
int i=0;
while (i<n)
{
InsertBST(bt,A[i]); //将关键字A[i]插入二叉排序树T中
i++;
}
return bt; //返回建立的二叉排序树的根指针
}
//输出一棵排序二叉树
void DispBST(BSTNode *bt)
{
if (bt!=NULL)
{
printf("%d",bt->key);
if (bt->lchild!=NULL || bt->rchild!=NULL)
{
printf("("); //有孩子结点时才输出(
DispBST(bt->lchild); //递归处理左子树
if (bt->rchild!=NULL) printf(","); //有右孩子结点时才输出,
DispBST(bt->rchild); //递归处理右子树
printf(")"); //有孩子结点时才输出)
}
}
}
//在bt指向的节点为根的排序二叉树中,查找值为k的节点。找不到返回NULL
BSTNode *SearchBST(BSTNode *bt,KeyType k)
{
if (bt==NULL || bt->key==k) //递归终结条件
return bt;
if (k<bt->key)
return SearchBST(bt->lchild,k); //在左子树中递归查找
else
return SearchBST(bt->rchild,k); //在右子树中递归查找
}
//二叉排序树中查找的非递归算法
BSTNode *SearchBST1(BSTNode *bt,KeyType k)
{
while (bt!=NULL)
{
if (k==bt->key)
return bt;
else if (k<bt->key)
bt=bt->lchild;
else
bt=bt->rchild;
}
return NULL;
}
void Delete1(BSTNode *p,BSTNode *&r) //当被删*p结点有左右子树时的删除过程
{
BSTNode *q;
if (r->rchild!=NULL)
Delete1(p,r->rchild); //递归找最右下结点
else //找到了最右下结点*r
{
p->key=r->key; //将*r的关键字值赋给*p
q=r;
r=r->lchild; //直接将其左子树的根结点放在被删结点的位置上
free(q); //释放原*r的空间
}
}
void Delete(BSTNode *&p) //从二叉排序树中删除*p结点
{
BSTNode *q;
if (p->rchild==NULL) //*p结点没有右子树的情况
{
q=p;
p=p->lchild; //直接将其右子树的根结点放在被删结点的位置上
free(q);
}
else if (p->lchild==NULL) //*p结点没有左子树的情况
{
q=p;
p=p->rchild; //将*p结点的右子树作为双亲结点的相应子树
free(q);
}
else Delete1(p,p->lchild); //*p结点既没有左子树又没有右子树的情况
}
int DeleteBST(BSTNode *&bt, KeyType k) //在bt中删除关键字为k的结点
{
if (bt==NULL)
return 0; //空树删除失败
else
{
if (k<bt->key)
return DeleteBST(bt->lchild,k); //递归在左子树中删除为k的结点
else if (k>bt->key)
return DeleteBST(bt->rchild,k); //递归在右子树中删除为k的结点
else
{
Delete(bt); //调用Delete(bt)函数删除*bt结点
return 1;
}
}
}
int main()
{
BSTNode *bt;
int n=12,x=46;
KeyType a[]= {25,18,46,2,53,39,32,4,74,67,60,11};
bt=CreateBST(a,n);
printf("BST:");
DispBST(bt);
printf("\n");
printf("删除%d结点\n",x);
if (SearchBST(bt,x)!=NULL)
{
DeleteBST(bt,x);
printf("BST:");
DispBST(bt);
printf("\n");
}
return 0;
}
运行结果:
4、认真阅读并验证平衡二叉树相关算法。
(1)由整数序列{43,52,75,24,10,38,67,55,63,60}构造AVL树;
(2)输出用括号法表示的AVL树;
(3)查找关键字55;
(4)分别删除43和55,输出删除后用括号法表示的二叉排序树。