(超详细)解决在conda环境种Mamba库无法安装的问题:causal-conv1d和mamba-ssm安装踩坑+解决

(超详细)解决在conda环境种Mamba库无法安装的问题:causal-conv1d和mamba-ssm安装踩坑+解决

代码需要使用到Mamba的一些块,涉及到安装

causal-conv1d和mamba-ssm这两个库(我是在恒源云租的服务器为Linux系统)

在这里插入图片描述

先总结正确的安装步骤,再具体说明我遇到的各种报错,小宝们可以对号解决

我安装并运行成功的正确步骤

  • 正确创建并配置新的conda环境
conda create -n Mamba(这里是你新环境的名称,我直接起了Mamba) python=3.10
conda activate Mamba(就是创建的新环境)
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
conda install packaging

在这里插入图片描述

参考我的版本:

causal-conv1d           1.1.1

mamba-ssm               1.2.0.post1
  • 把文件上传到服务器上,之后到对应的文件夹进行安装(不是服务器的话直接安装就行,记得在自己的conda环境里面装哈)
pip install causal_conv1d-1.1.1+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

pip install mamba_ssm-1.2.0.post1+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

报错

报错1:CUDA版本号不匹配

一开始我就直接在自己的conda环境下面使用了pip口令进行安装

pip install causal-conv1d 
pip install mamba-ssm 

(注意causal-con1d一定要在mamba-ssm之前进行安装,不然会报错)

在这里插入图片描述

发现会出现诸如此类的报错,总是会说CUDA版本要高于11.6 但是我自己的CUDA都是12.1的了不知道为什么会报错

于是我直接新建了conda环境,在新环境里面重新配置CUDA版本和安装对应的pytorch(服务器网慢就这个足足等了仨小时)

报错2:

卡在半截不动了……

image-20240414140307548

之后那我按照一个帖子的教程,直接去GitHub上下载whl文件,再进行安装……

参考地址:https://blog.csdn.net/qq_43767886/article/details/138681486

报错3:

ImportError: /usr/local/miniconda3/envs/Mamba/lib/python3.10/site-packages/selective_scan_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN3c107WarningC1ENS_7variantIJNS0_11UserWarningENS0_18DeprecationWarningEEEERKNS_14SourceLocationENSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEb

好不容易都安装好了,居然还是无法运行!!!此时我真的……要崩溃了

undefined symbol:未定义参数,寻思可能是版本问题,然后就找了比较新的版本

结果还是没解决……

  • 之后在GitHub上的讨论区发现 abi的那个参数得是FALSE 又重新下载安装 终于成功了
对于想要高效配置深度学习环境的开发者来说,掌握Mamba包管理器的使用至关重要。Mamba作为Conda的高性能替代品,可以大幅提高包管理环境配置的速度。特别是当你需要利用CUDA 11.8PyTorch 2.1进行GPU加速的深度学习任务时,一个正确配置的环境显得尤为重要。以下是详细的安装配置步骤: 参考资源链接:[MambaCausal-Conv1D的高效安装与配置指南](https://wenku.csdn.net/doc/10m05c8peu?spm=1055.2569.3001.10343) 首先,确保你的系统已经安装Mamba。可以通过以下命令进行安装: ```bash wget *** *** ``` 安装完成后,创建一个新的环境,指定Python版本需要的包: ```bash mamba create -n causal-conv1d python=3.10 mamba_ssm ``` 这里`-n causal-conv1d`表示为你的环境命名为`causal-conv1d`,`python=3.10`指定Python版本,`mamba_ssm`是Mamba SSM模块,它包含了CUDA 11.8PyTorch 2.1的支持。 激活你刚刚创建的环境: ```bash mamba activate causal-conv1d ``` 接下来,你可以安装Causal-Conv1D。假设你已经有了对应的`.whl`文件,可以使用以下命令安装: ```bash pip install /path/to/your/mamba_ssm-1.0.1+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl ``` 确保替换`/path/to/your/`为你存放`.whl`文件的实际路径。 为了验证安装,你可以在Python解释器中尝试导入Causal-Conv1D: ```python import torch print(torch.cuda.is_available()) # 应该返回True,表示GPU可用 ``` 此外,使用Mamba的优势在于它提供了更快的解决依赖更高的安装稳定性。对于团队开发来说,Mamba可以确保环境的一致性,使得开发部署过程更加顺畅。 在使用过程中,如果你遇到任何问题,可以参考《MambaCausal-Conv1D的高效安装与配置指南》,这本指南为你提供了更详细的步骤高级用法,帮助你从基础到进阶全面掌握这些工具的使用。而对于想要深入了解MambaCausal-Conv1D背后原理更多高级配置选项的开发者,建议进一步阅读官方文档社区资源,这样可以帮助你充分利用这些工具的强大功能。 参考资源链接:[MambaCausal-Conv1D的高效安装与配置指南](https://wenku.csdn.net/doc/10m05c8peu?spm=1055.2569.3001.10343)
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值