mamba_ssm和causal-conv1d安装教程

本文介绍了mamba模型的兴起及其可能取代transformer的可能性,着重讲述了在Windows环境下遇到的安装困难,推荐在Linux下离线安装causal_conv1d和mamba_ssm,提供详细的安装步骤和所需依赖版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

最近爆火的mamba模型,号称是可以取代transformer模型的存在,这个能不能取代,时间会告诉我们的。由于mamba模型比较新,所以在安装其环境的时候,还是有点麻烦的。mamba_ssm和causal-conv1d这两个包似乎不能在windows下安装,但是我没有尝试过(github也没有windows系统的离线包),看到其他博主这样说的,身边能有linux的还是在linux下安装吧!

由于在线安装,经常由于网络问题导致安装失败,因此本次教程使用离线安装(比较简单)

二、开始安装

创建虚拟环境、激活虚拟环境等等此处不在赘述。

我的环境配置为:torch2.0+cu118+python3.10

因此我使用这两个安装包是

causal_conv1d-1.0.0+cu118torch2.0cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

mamba_ssm-1.0.1+cu118torch2.0cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

下面是这个两个安装包的github的网址,可以去下载对应版本的包

causal_conv1d:Release v1.0.0 · Dao-AILab/causal-conv1d · GitHub

mamba_ssm:Release v1.0.1 · state-spaces/mamba · GitHub

下载之后,放到对应位置,且进入到要安装的环境。(先安装causal_conv1d)

安装命令:pip install 包名

eg:pip install causal_conv1d-1.0.0+cu118torch2.0cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

安装过程

然后,使用相同的方法,安装mamba_ssm。

希望以上的内容,对各位朋友,有所帮助。


可能会遇到的问题

如果离线安装的时候遇到超时的情况,安装那个包超时的,再次执行安装命令即可。

如果某个包很大,一直卡在那个包超时,你直接使用临时源安装那个包,安装完,在执行安装Mamba包的命令。

例如:我在安装mamba这个包的过程中,一直卡在camke这个包,出现超时。

然后,我直接安装cmake这个包的对应版本

就很快的安装好,然后,我在去安装mamba这个包

就不会卡在cmake这个包一直出错了。

如果又卡在一个新的包出错了,继续使用上述做法。

下面给出我的安装文件

链接: https://pan.baidu.com/s/1UuY0QUqxeQgT3XGVet1mNQ?pwd=1234 提取码: 1234 复制这段内容后打开百度网盘手机App,操作更方便哦 
--来自百度网盘超级会员v10的分享

### 安装 `mamba_ssm` 遇到 `subprocess-exited-with-error` 错误的解决方案 当尝试通过 `pip install mamba-ssm` 命令安装 `mamba_ssm` 时,可能会遇到如下错误: ``` Building wheel for mamba-ssm (setup.py) ... error error: subprocess-exited-with-error ``` 此问题通常由多种因素引起,包括但不限于网络连接不稳定、依赖包版本冲突以及特定于操作系统的配置问题。 #### 方法一:调整 PyPI 源并确保稳定网络连接 由于部分模块在构建过程中会动态获取资源,因此建议先切换至更稳定的 PyPI 源来减少因网络波动引发的问题。可以考虑使用国内镜像站点作为临时替代方案[^4]。 ```bash pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple/ ``` #### 方法二:手动指定所需依赖项及其兼容版本 有时默认安装流程未能正确解析某些库之间的相互关系,从而造成编译失败。针对此类情况,可提前单独安装关键组件,并严格限定其版本号以规避潜在矛盾。 对于 Python 版本高于等于12的情况下,如果遇到缺少 `numpy.distutils` 模块的问题,则应降低 setuptools 的版本至低于60[^3]。 ```bash pip install numpy==1.21.0 scipy==1.7.3 scikit-learn==1.0.2 pandas==1.3.5 torch torchvision torchaudio --upgrade pip install "setuptools<60" ``` #### 方法三:利用 Conda 或 Mamba 进行环境管理 考虑到纯 Pip 方式的局限性,推荐采用 Anaconda 发行版自带的包管理系统——Conda 或者更快捷的分支项目 Mamba 来创建独立的工作区,并在此基础上完成软件栈部署。 ```yaml name: ssm_env channels: - conda-forge dependencies: - python=3.9 - pytorch - torchvision - torchaudio - causal_conv1d - mamba_ssm prefix: ./envs/ssm_env ``` 保存上述 YAML 文件为 `environment.yml` 后执行命令: ```bash conda env create -f environment.yml conda activate ssm_env ``` 或者使用 Mamba 加速处理速度: ```bash mamba env create -f environment.yml mamba activate ssm_env ``` 这种方法不仅能够有效隔离不同项目的运行时需求差异,还能显著提升多平台移植性维护便利度。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WinterWanderer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值