目录
学习方法:
1.master基本概念、基本电路、基本分析方法!
- 基本概念:概念是不变的,应用是灵活的,“万变不离其宗”。
- 基本电路:构成的原则是不变的,但具体的电路是各种各样的。
- 基本分析方法:由于 不同类型的电路有不同的性能指标和描述方法,故有不同的分析方法。
2.注意 定性分析 和 近似分析 的重要性。
(actually,我还不知这二者的含义。。。)
成绩组成:
四六开
平时:
- 作业20%:mooc每章节的作业10分;雨课堂10分
- 测试14%:mooc的八次测试
- 课程报告3%:mooc提交
- 讨论3%:mooc每个章节都有讨论要求
期末:60%
1.直流电路
1.1电路及电路模型
1.1.1电路的定义
由 金属导线 和 电气、电子部件 组成的 导电回路。
(直流电流过就是直流电路;交流电流过的就是交流电路。。。)
1.1.2电路的作用
略。。。
1.1.3电路的组成
(1)电源 --- “凡是能将非电能转换为电能的装置”
(2)中间环节 --- 连接电源和负载的部分,起负载和分配电能的作用
(3)负载 --- “将电能转换为非电能的装置”
1.1.4电路模型
理想电路元件:
忽略次要因素,将实际电路元件理想化。
电路模型:
由理想电路元件所组成的电路。
1.2电路变量
1.2.1电流和电流的参考方向
电流:电荷有规则的运动形成电流
电流强度:在电场的作用下,单位时间内通过导体某一横截面的电量。用符号 I or i 表示
电流的实际方向:正电荷移动的方向
参考方向:任意假定的电流方向,简称方向
电流参考方向的表示方法:箭头
以下两种方法都可以
实际方向与参考方向一致的,电流值为正值;反之,为负值。
1.2.2电压和电压的参考方向
- 电压:
电场力把单位正电荷从a点移动到b点所做的功,用符号 U or u 表示。
电压的实际方向:电位下降的方向。
参考方向(极性):任意假定的电压方向。
电压参考方向的表示方法:
1.
2.
3.
--- Uab = -Uba
实际极性与参考极性方向一致的,电压值为正值;反之,为负值。
1.2.3关联参考方向与非关联参考方向
一个元件或者一段电路中电压和电流的方向均可以任意选定,二者可以一致,也可以不一致。
- if 一致,称为 关联参考方向。
- 反之,称为 非关联参考方向。
1.2.4电位
常选取电路的某一点作为参考点,并将参考点的电位规定为零,用符号 or
表示,那么其他点与参考点之间的电压就称为该点的电位。
注意:
- 唯一性:只有选择了参考点才有电位的说法,凡是涉及电位的电路必须有一个参考点也只能有一个参考点。
- 两点之间的电压 = 两点之间的电位差。
例题:
所以:
选择不同的参考点,电位会发生变化,但是两点之间的电压与参考点无关。
利用电位可以将电路简化,常常将电源符号省去标出电位值(大小和极性),这是电子电路的惯用画法。((a)图变为(b)图)
1.2.5功率和能量
电功率:单位时间内元件吸收或发出的电能,简称功率。
对任意一个二段元件(or二端电路),当电压与电流为关联参考方向时有:
若为直流电压和电流,那么用大写符号:P = UI。
同理,当电压与电流为非关联参考方向时有:
若为直流电压和电流,那么也用大写符号:P = -UI(切记不要漏负号)
一般来说,根据能量守恒定律:吸收功率 = -提供功率
1.3电阻元件
1.3.1电阻元件
电阻:反映电路器件消耗电能的物理性能的一种理想二端元件。
(不可逆地将电能转换为热能、机械能。。。)
1.3.2欧姆定律
(定义不再说。。。)
- 若电压与电流取关联参考方向,那么就满足欧姆定律:R = u/i
- 任意时刻满足欧姆定律的电阻元件,称为 线性电阻元件。
- 反之,某些时刻不满足的,称为 非线性电阻元件。
伏安特性(VAR):元件电压与电流之间的关系。
- 线性电阻的伏安特性必是过原点的一条直线。
- 非线性电阻的伏安特性曲线并不是。
for 线性电阻,电压与电流非关联参考方向时,欧姆定律表述为:u = -R·i(负号只表示方向)
电导:电阻的倒数,用大写字母G表示。 单位:西门子(S),毫西门子(mS)
那么欧姆定律又可以表述为:i = G·u or i = -G·u
电阻的功率:
当然,直流电路中请直接用大写字母U、I。
1.4电压源与电流源
1.4.1理想电压源
理想电压源简称电压源,是个二端元件。
Feature:
- 电压源输出的电压恒定,与外电路无关。
- 电流任意,由外电路确定。
符号:(两种表示方式) 电压源的VAR:(一条平行于横轴的直线)
1.4.2理想电流源
理想电流源简称电流源,是个二端元件。
Feature:
- 电流源输出的电流恒定,与外电路无关。
- 电压任意,由外电路确定。
符号:(一条横线,与电压源相似,注意区分) 电流源的VAR:
1.4.3短路与断路
短路
电压源的电压为零,Us = 0时,端口电压U = 0,此时的电压源相当于短路(导线)。
断路
电流源的电流为零,Is = 0时,端口电流I = 0,此时的电流源相当于断路(开路)。
1.4.4实际电压源
实际电压源模型其实就是考虑了电池内阻问题,那么该模型就可以表示为电压源Us和内阻Rs串联组成。
所以,其端口VAR可以表示为:U = Us - I·Rs
Uoc为开路电压,此时没有接入外电路,电流I为0,Uoc = Us
Isc为短路电流,此时Isc = Uoc / Rs
1.4.5实际电流源
实际电流源无非就是电流源Is 和 内阻Rs 并联组成。
其端口VAR可表示为:
易:Rs 趋于无穷时,为理想电流源。
Uoc为开路电压,此时相当于没有接入外电路,电流I为零,Uoc = Is·Rs
Isc为短路电流,此时外接电压U为零,Isc = Is
1.5基尔霍夫定律
1.5.1基本概念(别跳,不总是你认为的那样。)
- 支路:电路中的每一个分支。(什么叫分支?让你指出来有多少条支路你真的能确定吗?)
- 节点:三条或三条以上支路的联接点。(就是该画黑点的地方。但也并不是这么说。)
- 回路:由支路组成的闭合路径。
- 网孔:内部不含有任何支路的回路。
例题:(请认真理解。)
judge支路、节点、回路、网孔?
sothat 你会发现,支路??what?
图中被打了箭头的就是支路之一,仔细想想,不难发现就是简化后的相邻节点的电路。
(为什么要强调简化后的节点?请看下面。)
例题:
一样,judge支路、节点、回路、网孔?
支路:4条;网孔:3个;回路:6条;节点:2个
(红圈内的两个黑点是一个节点,不再赘述。。。)
1.5.2基尔霍夫电流定律(KCL)
基尔霍夫电流定律:任一时刻流出(流入)任一节点的电流的代数和等于零,记为KCL,其表达式为:
如图:(切记标出各支路电流方向)
KCL还可以表述为:任一时刻,流入任一节点的电流之和等于流出任一节点的电流之和。
那么上图中:
节点a:I1 = I2 + I3; 节点b:I3 + I2 = I1
KCL还可以推广至包围部分电路的任一假设的闭合面,这个假设的闭合面称为 广义节点。
如此图中,虚线圈内视为 广义节点,那么有:IA + IB + IC = 0
1.5.3基尔霍夫电压定律(KVL)
基尔霍夫电压定律:沿任一闭合回路绕行一周,各个支路电压的代数和为零,又称为基尔霍夫第二定律,简称KVL。
其表达式为:
如图:(切记标出各回路绕行方向)
--- 怎么看的呢?
--- 方向顺时针或逆时针都是自己选的,元件靠近电压源正极的一端是正,顺着方向先碰到正的就写正号,碰到负的就写负号。
KVL也可以推广到任一开路中,但要将开路电压列入方程。
例题:
求图中Uab,Ubc,Uca。
由KVL:
Uba + 5I1 + 5I2 = 0 --- Uab = 5I1 + 5I2 = 5V
Ubc + 5I2 + 5I3 = 0 --- Ubc = -5I2 - 5I3 = 20V
Uca + 5I1 - 5I3 = 0 --- Uca = 5I3 - 5I1 = -25V
1.6单口网络及等效
1.6.1单口网络
单口网络(二端网络):
网络与外部电路只有一对端钮(或一个端口)联接。
网络内部 含有独立电源 的单口网络,称为 含源单口网络。
网络内部 不含有独立电源 的单口网络,称为 无源单口网络。
1.6.2单口网络的等效
正如一个元件的伏安关系是由这个元件本身所决定,同样一个单口网络的伏安关系也完全取决于单口网络本身。
若两个单口网络N1、N2的伏安特性完全相同,那么称 这两个单口网络是等效的。
注意:等效是对外电路等效,内部结构不一定是一致的。
1.6.3电阻的串联及等效
串联简单,不再赘述。。。。
只需要记住串联时的分压公式:
1.6.4电阻的并联及等效
两个并联电阻的等效电阻:(上乘下加)
记住并联时的分流公式:
(同分压不同,下标不一致,这时推出电导公式。。。)
用电导表示两个电阻并联时的等效电导:
这时用电导表示两个电阻并联时的分流公式:
1.6.5理想电源的等效变换
1.电压源的串联及等效
2.电流源的并联及等效
(以上两个等效还是很显而易见的。。。。)
3.电压源与元件的并联
此时可以去掉并联的元件
4.电流源与元件的串联
此时可以去掉串联的元件
1.6.6实际电源两种模型的等效变换
(Actually,一眼看下去觉得没什么,但我发现电流源并不是一下就理解了。。。)
电压源模型就是显而易见的分压嘛。。。
电流源模型则是 R0会流过Is和I0,反方向故是减号。(KCL)
等效变换注意事项!
1.等效关系只是相对于外电路而言,对电源内部是不等效的!
比如外电路电阻充分大时,电压源模型中内阻不损耗功率,单电流源模型中内阻损耗功率极大!2.等效变换时,两电源的参考方向要一致。
3.理想电压源和理想电流源之间无等效关系。
4.任何一个电压Us和某个电阻R串联的电路,都可以等效为一个电流Is和这个电阻R并联的电路。
课上重要例题:
注意:
图b中,任意与理想电压源并联的器件都可以被该理想电压源替代。
图c中,任意与理想电流源串联的器件都可以被该理想电流源替代。
注意,图(c)这种情况,电压源并联会直接取大。(问了老师,说实话我没理解,那就先这样想了。。。)
1.7支路电流法
- 以支路电流为未知量,应用KCL、KVL列写方程求解。
Remember:支路电流法列方程先看支路的数量,有多少个支路电流作为变量,就应该列写出多少个独立方程!
由图中,可知:节点数:n = 4;支路数:m = 6。
1.根据节点列出KCL方程
不难发现:四个方程并不都是独立的(任选三个方程可互相叠加得到另一方程)。
结论:有一个方程是冗余的。
推广:
n个节点的电路中,只能列写出(n-1)个独立KCL方程。
(ok,现在得到3个独立方程,那还需要另外3个独立方程才能进行求解。。。)
2.根据回路列出KVL方程(网孔优先)
以上三条方程都是根据网孔得到,参考方向都是顺时针。(自己检验一下。。。)
该电路中有7条回路,可以得到7个KVL方程,但由于必须保证每个独立方程中有新的支路出现(否则无法求解电路中所有支路电流),所以,独立回路方程的选择有多种,不局限于上面回路1、2、3。
结论:每个KVL方程都必须有新的支路出现,才可以确保其独立性。
推广:
需要m个独立方程,列写出(n-1)个KCL方程后,还需要补充m -(n-1)个KVL方程。
3.支路电流法步骤总结
(1)确定支路数m,选定支路电流的参考方向。
(2)找出所有独立节点n,利用KCL列写出(n-1)个独立的节点电流方程。
(3)选择所有独立回路,并指定每个独立回路的绕行方向,利用KVL列写出m-(n-1)个独立的回路方程。
(4)联立m个方程式,求解各支路电流和其他响应(由于源的作用而产生的电路变量)。
课上例题:
节点数:n = 2
对上面节点有:
I1 + I2 + IS3 = I4
(还差两个方程。。。)
在网孔优先的前提下,不选择电流源支路所在的网孔,因为电流源两端的电压未知。
1.8节点分析法
1.8.1节点分析法中的名词定义
- 节点电位:选择了电路中任一节点作为 零电位参考点,其他各个节点的电位称为 节点电位。
- 参考方向:节点电位的参考方向是从 该节点 指向 参考节点。
- 节点电位分析法:若求得节点电位,可以由节点电位求出各个支路的电压以及其他的响应。
1.8.2节点分析法解题步骤
1.确定 支路数m,选定支路电流的参考方向。
2.确定 节点个数n,选择其中任一节点为参考节点。
3.利用KCL列出(n-1)个独立的节点电流方程。(还记得什么叫独立的吗?)
4.用节点电位表示出各个支路电流,并代入KCL列出的(n-1)个节点方程。
5.求解方程式。
课上例题:
(注意:
参考节点已在图中接地表示;
表示各支路电流时请用KVL写出原始式子,再换成答案这样的形式,千万注意负号。)
1.9叠加原理
1.9.1数学知识点
线性关系:两个变量之间存在一次方函数关系。
若一个元件的伏安特性方程为线性函数,也就是同时满足齐次性和可加性,称其为线性元件。
(不再赘述。。这学期的课几乎都涉及到了 线性、非线性的定义。。。)
1.9.2叠加原理
在 线性电路 中有多个电源共同作用时,电路中任何一条支路的电流(或电压),都等于电路中各个电源 单独作用 时,在该支路中所产生的电流(或电压)的代数和。
- 电压源不作用时 == 短路!
- 电流源不作用时 == 断路!
示例:(必须明白!!)
(注意:
两个单独作用的分电路中,电流物理量不相同,书写时也要注意写出!
但是各支路电流与原电路电流方向保持一致!)
1.9.3注意事项
- 叠加原理只适用于 线性电路。
- 线性电路中的电流或电压均可以用叠加原理进行计算。但是!功率P不可以,其表达式非线性。
课上例题:
1.10等效电源定理
1.10.1有源二段网络与无源二端网络
(再复习一下咯,,我知道前面说过。。。)
- 二端网络(单口网络):具有两个出线端的部分电路。
- 无源二端网络:二端网络中没有电源。
- 有源二端网络:二端网络中含有电源。
(比如下面这个电路可以切成不同的网络)
1.10.2等效电源定理
(1)无源二端网络 可以等效为一个任意值的 电阻。
(2)有源二端网络 可以等效为 实际电压源 或 实际电流源。
1.10.3戴维南定理
(实际上就是对1.10.2的分情况具体阐述。。。)
任何一个 有源二端线性网络 都可以用一个电压源和电阻的串联来等效代替。
等效电压源(并不是虚线框住的整体,就只是里面那个电压源)的电压等于有源二端网络的开路电压Uoc。
等效电阻等于有缘二端网络中除去所有电源(电压源短路,电流源断路)后得到的无源二端网络的等效电阻Ro。
所以,要应用戴维南定理,就得切出一个开路电路。
课上例题:
1.10.4诺顿定理
(也是对等效电源定理的另一情况的具体阐述。。。)
任何一个 有源二端线性网络 都可以用一个电流源和电阻的并联来等效代替。
等效电流源(并不是虚线框住的整体,就是里面的电流源)的电流等于有源二端网络的 短路电流Isc。
等效电阻等于有源二端网络中除去所有电源(电压源短路,电流源断路)后得到的无源二端网络的 等效电阻Ro。
所以,要应用诺顿定理,就得得到短路电流电路。
课上例题:
(对比图a和b,电路的右边已经补全导线得到短路电流Isc。)
总结:
1.10.5经典例题
1.11含受控源的电阻电路
1.11.1双口网络
具有两个外接端口的电路,又称为 二端口网络。
- 单口网络中,端口的电压与电流之间的伏安关系,只涉及两个物理量,只有一种关系。
- 双口网络中,对于输入端有 Ii 和 Ui,输出端有 Io 和 Uo,涉及四个物理量,六种关系!
(Remember。。。)
1.11.2四种受控电源的模型
受控源符号 菱形!
判断何种控制的独立源,只需要观察该独立源旁的符号,U即为受电压控制,I即为受电流控制。
例题:
晶体三极管:
可以等效相似为:受电流控制的电流源!
致命缺点,由于其受电流控制,无法做到低功耗。
场效应管:
可以等效相似位:受电压控制的电流源!
电压控制带来的好处是电流可以非常小!
当Ui部分做成电阻很大(开路)的时候就可以实现低功耗!
1.11.3含受控源的电阻电路
1.电源等效变换
(电源等效变换题目中 受控源可以视为电压源 or 电流源 但要保留该受控量 不要合并!)
2.支路电流法、节点电位法
(这类题目中 受控源可以视为独立源)
3.受控源未必是输出功率
4.叠加原理
(这类题目中 由于受控源的值受别的物理量控制 所以不能再像上面一样看作独立源了!!)
((1)中受控源已不成回路,I'串联计算。。。)
5.等效电源定理
(保留受控源 不可视为独立源置零 求等效电阻!)
开路短路法中,要分别用戴维南等效电路和诺顿等效电路分别求得Uoc、Isc。
外施电源法中,该假定的外施电源会控制对所求电路的所有初始物理量,也就是独立源存在时的状态!(理解!!)
1.11.4总结与注意事项
1.将电路进行化简时,当受控源还被保留,不要将受控源的控制量消除掉。
2.在应用支路电流法和节点电位法时,可把受控源看作电压源或电流源。
3.在应用叠加原理和等效电源定理时,应保留受控源,不能像独立源那样处理。
4.使用叠加原理时,受控源的控制量随着不同独立源的作用而作相应的变化。
2.一阶动态电路的暂态分析
稳态!
当电路中电源恒定不变或随时间作周期性变化时,电路中的响应也是恒定不变或随时间作周期性变化的工作状态,称为稳定状态 / 稳态。
(稳态分析是第一章直流电路中设计的噢!接下来是暂态分析了!!)
2.1电容元件与电感元件
2.1.1电容元件
存储电荷的元件,两条相等长度的竖线。
电压与电流去关联参考方向
(Remember。。。)
电容某时刻的电荷量 / 电压,并不只是取决于该时刻的电流值,还与t0时刻前的历史有关系,为记忆元件。
电容某时刻的储能与该时刻的电压的平方成正比。
2.1.2电感元件
磁通量 与电流 i 取右螺旋方向:(N为线圈匝数)
电压与电流取关联参考方向
(Remember。。。)
同样的,电感某时刻的电流,并不是只取决于该时刻的电压值,还与t0时刻前的历史有关系,为记忆元件。
2.1.3总结(理解并牢记)
课上例题:
2.1.4电路元件与电路变量之间的关系(预告)
提前了解!
2.2换路定则及其初始条件
2.2.1动态电路及换路
- 动态元件:电感和电容元件 的伏安特性具有微积分的动态关系。
- 动态电路:含有动态元件的电路。
- 换路:动态电路的结构或元件的参数发生变化。
(动态电路中的激励、信号的突然输入或撤出等。。)
2.2.2过渡过程
电路在换路时,原有的工作状态被破坏,新的工作状态被建立,电路从原有的稳定状态变化到另一种新的稳定状态。这个变化过程往往不能一瞬间完成,而是需要一定的时间。
2.2.3暂态分析
- 暂态:由于过渡过程一般用时极短,是一个暂时的工作状态,所以过渡过程又称为 暂态过程,简称 暂态。
- 暂态分析:求解暂态的响应,又称 时域分析。
- 尽管暂态过程可能只有那么一短短的时间,但其在电路中产生的影响是不能忽略的。
弊处:若不对电路的暂态过程采取适当措施,可能会出现比稳态时大得多得多得电压或电流,使得元件和设备被损坏。(暴雷天气下的变压器。。。)
利处:暂态过程可以用来产生特定的波形,或改善和变换信号的波形。
2.2.4一阶电路及换路时刻
- 一阶电路:由于储能元件的电压与电流是微分关系,分析动态电路要列写微分方程。那么,若动态电路建立的微分方程为一阶微分方程,则该电路为一阶电路。
- 一般来说,含有几个储能元件的电路,列写出来的就是几阶微分方程。
- 换路时刻:设换路的时刻t=0,换路前的瞬间记为
,换路后的瞬间记为
,二者在数值上都等于零。
2.2.5换路定则
1)第一种理解
由于物体所具有的能量不能跃变,所以,在换路瞬间,储能元件的能量也不能跃变。
由:
得到,换路是电容上的电压,电感上的电流不能跃变:
2)第二种理解
由电容和电感的伏安特性:
若取,得到:
积分项中上下限为零,故积分项为零值,能同样得到:
2.2.6初始值
用时域分析法求解电路的动态过程的实质就是求解微分方程。因此,必须要用初始条件确定积分常数。
初始值:
就是所求变量在换路结束瞬间(即)的值。
课上例题:
由例题,我们有以下总结:
1)换路前,若电路已处于稳定状态,那么电容可视为无穷大的电阻(开路),电感可以视为一根导线(短路),从而得到 t=0- 的等效电路。
2)换路前,若电路中的储能元件没有储能:
对于电容这一储能元件,意味着没有电压,所以可以视为短路;
对于电感这一储能元件,意味着没有电流,所以可以视为开路。
3)换路后,若换路前电路已处于稳定状态,那么电容电感放电,其分别具有电压源和电流源的特性,可以做出新的等效电路。
课上例题:
2.3一阶电路零输入响应
(理解下面这段话,精髓!)
一阶电路中仅有一个储能元件(电感或电容,没有第三者可选),如果在换路瞬间,储能元件本来就有能量储存,那么即使电路中并无外施电源存在,换路后电路中仍将有电压、电流。在这种情况下,电路中并无外电源输入,因而电路中所引起的电压或电流就是电路的零输入响应。
(简而言之,没有外源的输入,纯靠自己的能量当输入。。。)
2.3.1动态电路的响应
一阶电路的响应:可分别由 外加激励 和 储能元件初始储能 产生。
- 零状态:初始时电路中各个电容电压与电感电流均为零的电路状态。
- 零输入响应:电路在无输入激励情况下,仅由原始状态产生的响应。
- 零状态响应:电路在零状态情况下,仅由电路的输入激励产生的响应。
- 全响应:一个非零原始状态的电路在输入激励的情况下产生的相应。
2.3.2RC电路的零输入响应
如(a)所示电路中,开关K置于1,电路已达稳态,即电容电压已经达到 U0。
t = 0时,开关K迅速由1切至2。已经充电的电容脱离电压源,与电阻R连接,如(b)所示,无信号源作用,因而称为RC电路的零输入响应。
换路瞬间,电容电压不能跃变,有:
由于电容与电阻并联,电阻电压与电容电压相同(电压分压,全被无穷大阻值的电容抢完了):
电阻的电流为:
电阻消耗的能量需要电容放电来提供,使得电容电压下降,电压从初始值 U0 逐渐减小到零的变化过程。这一过程变化的快慢与电阻元件参数的大小和电容元件参数的大小有关。
各物理量分析:
如图所示的电路中,各元件流过的电流选择关联参考方向。
由KVL得到:
由KCL和电阻、电容的VAR方程,得到:
两条式子联立:
(这就是我们那么长篇幅讨论出来的常系数线性 一节齐次微分方程。。。)
其通解为:
(Remember。。。)
式子中A是一个常量,由初始条件确定,当 t=0+时,得到:
由初始条件、换路定则得到:
所以:
最终,得到RC电路的零输入响应为:
根据电容的伏安特性,结合上面零输入响应,还可以得到电容电流:
由曲线可知,电容电压电流的变化快慢取决于R和C的乘积。令 ,称其为RC电路的时间常数。
时间常数的物理意义:
1)时间常数反映了动态过程的快慢,其值等于电压Uc衰减到初始值U0的e^-1时所需的时间。
根据RC电路的响应曲线,只有t趋近于无穷时电路才能真正达到稳态。
2)工程上认为,电容放电基本结束。
由电路一阶微分方程:
移项可得:
可知,过曲线上任一点t1作曲线的切线,交横轴于点。
3)由2)引出新名词:次切距。
时间常数等于Uc曲线上任一点的次切距长度。
次切距:
切点在定直线(通常为x轴)上的垂足,到切线与定直线交点间的距离。
课上例题:
2.3.3RL电路的零输入响应
如(a)所示,开关K在打开前电路已达稳态,在t=0时,开关K打开,换路后的电路如(b)所示。
开关K闭合时,电感电流原来等于电流I0,电感中储存一定的磁场能量。t>0(换路后)时,无信号源作用,因而称为RL电路的零输入响应。
在开关闭合瞬间,由于电感电流不能跃变,这个电感电流通过电阻R时引起能量的消耗,造成电感电流不断减少,直到电流变为零。
各物理量分析:
如图所示的电路中,各元件流过的电流选择关联参考方向。
由KVL得:
根据电感VAR方程得到:
上面两式联立得到:
这个微分方程与RC电路微分方程相似,其通解为:
带入初始条件得到:
最后得到电感电流和电感电压的表达式:
(电流能取t=0,因为初始状态就是I0;电压不能取,因为初始状态是零阻值(导线),没有电压。。。)
再次引入时间常数,那么上式改写为:
时间常数的物理意义:
与RC电路类似。。。
RL电路零输入响应也是按指数规律衰减,衰减的快慢取决于时间常数。
课上经典例题:
2.4一阶电路零状态响应
2.4.1RC电路的零状态响应
如图所示电路中的电容原来未充电,。t=0时开关K闭合,电压源Us被接入RC电路。
由于电路的初始状态为零,即,开关K闭合后,电路响应由外加激励引起,因此为RC电路的零状态响应。
根据KVL定律,有:
根据电容的var特性:
联立以上两个式子可以得到:
这是一个常系数线性一阶非齐次微分方程。其解包括两部分,即:
是方程的通解,其形式与零输入响应相同,即:
是方程的特解,应满足非齐次微分方程。对于直流电源激励的电路,它应当是一个常数,令其等于常数B,代入一阶非齐次微分方程,可得:
求得:
所以得到非齐次微分方程的解为:
式子中的常数A由初始条件确定,在t=0+时:
求得:
代入方程解中得到电容电压的零状态响应为:
接着,可以得到电容电流:
与放电过程类似,经过3-5个时间常数的时间,可以认为电容电压接近电源电压,即充电结束。
课上例题:
2.4.2RL的零状态响应
RL一阶电路的零状态响应与RC一阶电路相似。
如图所示,电路在开关K闭合前,电感电流为零,即。t=0时,开关K闭合。
由KVL,得到:
根据电感的var特性:
二者联立得到:
由于推导过程与RC一阶电路相似,不再赘述。上文得到的是一阶常系数非齐次微分方程,其解为:
常数A依旧由初始条件确定,即:
最后得到一阶RL电路的零状态响应:
响应曲线如图所示:
课上例题:
2.5一阶电路完全响应
电路中储能元件的状态不为零,激励电源也不为零,由储能元件的初始储能和激励电源共同引起的响应,称为 全响应。
2.5.1RC电路的全响应
如图所示,开关在t=0时由1扳向2。若开关置于1时,电路处于稳态,即t=0-时,,电容有初始储能。
当开关置于2的位置,在t>0时,电路中电容有储能且有Us的作用。
换路后,开关置于2的位置,电路如图所示。
由KVL、电容的var特性:
这又是一个常系数线性一阶非齐次微分方程,其解为:
通解:
特解,对于直流电源激励的电路,它是一个常数,设其为B,代入可得到:
所以有:
再确定一下常数A(t=0+):
得到电容电压的全响应为:
(全响应 = 稳态分量 + 暂态分量 )
而根据该电路特性:
上面推导出的全响应可以变为:
(全响应 = 零输入响应 + 零状态响应)
可见,RC电路的全响应等于零输入响应与零状态响应之和。这是线性动态电路的一个基本性质,是叠加原理的一种体现。
以上两种叠加的关系,可以用曲线来表示。
1)全响应分解为稳态响应与暂态响应之和。
2)全响应分解为零输入响应与零状态响应之和。
2.5.2RL电路的全响应
如图所示,开关在t=0时由1扳向2。若开关置于1,电路处于稳态,,电感有初始储能。
开关置于2,有换路定则。t>0时,电路中有储能且Is的作用,此电路为RL电路的全响应。
换路后,开关置于2的位置,电路如图所示。接下来也是推导微分方程。
由KCL、电感的伏安特性,得到换路后的微分方程:
这是一个常系数线性一阶非齐次微分方程,其解为:
通解:
特解:对于直流电源激励的电路,它是一个常数,设其为B,代入方程可得:
所以:
接着确认一下A(t=0+):
最终得到电感电流的全响应为:
(全响应 = 稳态分量 + 暂态分量)
而根据该电路特性:
上面推导出的全响应可以变为:
(全响应 = 零输入响应 + 零状态响应)
可见,RL电路的全响应也等于零输入响应与零状态响应之和。这是线性动态电路的一个基本性质,是叠加原理的一种体现。
2.6三要素法求一阶电路的全响应
2.6.1三要素法求一阶电路响应
电路的三要素:
1)初始值;
2)稳态值;
3)时间常数。
注意,由于求时间常数必须得求取电路等效电阻,此时请按照第一章中的等效电路进行求解, 即:电压源短路,电流源开路。
可以得到三要素法公式:
三要素法的适用范围:
1)直流电源激励下;
2)一阶线性动态电路;
3)可以求解电路中任何元件的电压和电流。
课上例题:
2.6.2非动态元件的响应
非动态元件支路电压(电流)用三要素法求解时,其时间常数由动态元件决定。
课上例题:
3.正弦稳态电路的分析
3.1正弦交流电的基本概念
3.1.1正弦交流电
- 正弦量:随时间按正弦规律变化的物理量。
可以采用正弦函数,也可以采用余弦函数。本教材采用sin形式。 - 正弦交流电:大小和方向随时间按正弦规律变化的电压和电流。
3.1.2正弦交流电的表示
- 正弦交流电路:指激励和响应都随时间按正弦规律变化的线性电路。
- 在正弦交流电路中,大小和方向随时间按正弦函数规律变化的电流或电压,瞬时值的一般表达式为:
可见,每个正弦量都包含三个基本要素,它们是区分不同正弦量的依据:
- 最大值或幅值(Um、Im);
- 角频率
;
- 初相位
。
3.1.3幅值与有效值
- 最大值(幅值):表示正弦量瞬时值中最大的值。一般用大写字母加下标m表示。
- 交流电的有效值:与交流电热效应相等的直流电值。用大写字母I、U表示。
由此可得,同理对电压也有:
注意:交流电压表与交流电流表测量的数据为有效值,交流设备铭牌标注的电压、电流均为有效值。
3.1.4周期与频率
- 周期T:表示正弦量完成一个循环所需的时间。
- 频率f:单位时间内完成的循环数。
- 角频率
:单位时间内正弦函数变化的角度,表示正弦量变化快慢。
3.1.5相位和相位差
- 初相位:表示正弦量的初始值,即正弦量在t=0时刻的相角。
- 相位差:两个同频正弦量的相位之差。(不同频率的正弦量之间比较相位差没有任何意义。)
- 若
,称 u 超前 i ,或 i 滞后 u。
-
若
,称 i 超前 u ,或 u 滞后 i。
3.2正弦量的向量表示法
3.2.1复数的表示形式及运算
(略,直接截图。。。)
复数的表示形式:
复数的运算:
复数的加减用复数的代数形式,复数的乘除用指数形式或极坐标形式就比较简单。
旋转因子:
课上例题:
3.2.2正弦量的相量表示法
矢量可以用复数表示,所以用矢量表示的正弦量也可以用复数表示。
比如一个正弦电压量:
用三要素即可表示一个正弦量u,在确定的频率下分析计算正弦量,用
就可以表示正弦量u。
因此,u可以用相量形式表示:
相量:用来表示正弦量的复数。在大写字母上加“点”。
课上例题:
注意:
相量是一个与时间无关的复值常数,所以它可以表示正弦量,但并不等于正弦量。
相量与正弦量之间的关系是 一一对应的关系,用双箭头表示:
课上例题:
3.3基尔霍夫定律的相量表示
3.3.1基尔霍夫定律的相量表示
- 基尔霍夫定律不仅适用于直流电路,对于随时间变化的电压与电流,在任何一瞬间都是使用的。基尔霍夫电流/电压定律的一般形式为:
- 在正弦交流电路中,各个电压与电流都是同频率的正弦量,基尔霍夫定律可以用相量形式来表示:
课上例题:
3.4三种基本元件伏安关系的相量形式
3.4.1电阻元件
电压与电流的关系:
而电压与电流的关系还可以用相量表示:
这是欧姆定律的相量形式。复数相等时模与角分别相等。
此式表明:
有效值:
相位关系:
相量形式的电阻元件符号如图所示:
3.4.2电感元件
电压与电流的关系:
(熟悉以上推导。。)
继续推导:
用相量形式写出电感电压与电流之间的关系:
(辐角为90度。。。)
这是电感电路中欧姆定律的相量形式。
课上例题:
(电感具有通低频、阻高频,通直流、阻交流的作用。)
(当然你可以直接用电感的伏安特性公式求。。。)
3.4.3电容元件
直接给出推导:
用相量形式写出电容电压与电流之间的关系:
(辐角可以视为-90度,所以有负号。)
这就是电容电路中相量形式的欧姆定律。
课上例题:
(电容具有通高频、阻低频,通交流、阻直流的作用。)
3.4.4单一参数电路中的基本关系表
3.5简单的正弦交流电路
3.5.1 RLC串联交流电路
如图所示的电路,设输入电流符合正弦交流形式:
那么,可以得到三个元件的瞬时值(看清楚,是瞬时值。):
(是瞬时值!先转为相量形式运算,再转换为该瞬时值形式才得到如上正确答案。)
三者对应的相量形式:
由于相量形式依然遵循KVL定律,可以得到:
(不难发现,Z已成为一个复数,实部为R,虚部为XL-XC。)
由上面的推导,引入如下概念:
电抗X:
感抗与容抗之差,单位为欧姆。
复阻抗(阻抗)Z:
实部为电阻,虚部为电抗。阻抗是复数,但不表示正弦量,故不在大写字母上面加“点”。
复阻抗的模: 复阻抗的辐角(阻抗角):
3.5.2 RLC串联交流电路的特点
RLC串联电路,包含了3种性质不同的参数,是具有一般意义的典型电路,而单一参数的电路可以看作是RLC串联电路的特例。
对于阻抗:
(非常好理解,感抗强就是感性电路,容抗强就是容性电路。)
课上例题:
(若只有L的存在,那就选A;但是由于R纯电阻元件的电压与电流同相,画出相量图,合成后,总是小于90度。)
- 瞬时值对瞬时值,换句大白话讲,那就是小写字母对小写字母。
- 看第一条。
- 有效值对有效值,记得复阻抗取模。
- 看第三条。
- 这是电容的瞬时电压定义式。
- 看似有效值对有效值,没问题,但是在交流电路中电容电压是变化的,取有效值算有效值没意义。
- 这下就对了,瞬时值才有意义。
- 这个也没问题,相量形式可以。
- 复阻抗取模,分压公式。
- 相量形式的分压公式。
- 复阻抗表达式写错了,容抗是有分母的。
3.5.3阻抗的串联和并联
分析方法和结论与直流电阻电路串联很类似。
阻抗的串联:
显然,多个阻抗串联时的等效阻抗为:
容抗的并联:
导纳(复导纳):复阻抗的倒数,用大写字母Y表示。
(导纳并联时。)
课上例题:
(注意是先画出相量图,再有这个勾股计算的式子。看下一题你就懂我意思的。)
(请先画出相量图,L和C的相量互相抵消,最后变成sqrt(16+9)=5了。)
3.6正弦稳态电路分析
for复杂的交流电路,依旧可以同直流电路一样应用对应的分析方法,包括但不限于:支路电流法,节点电压发,叠加原理,等效电源定理。
所不同的是,电压和电流要用其对应的相量形式,电路的参数用复数表示。
课上例题:
(叠加原理分析步骤不变。)
(在b中的回路中,先合并电压源(U1-U2),再算分压而已,自行理解。)
3.7正弦稳态电路的功率
3.7.1瞬时功率
用小写字母p表示。
单口网络电压与电流取关联的参考方向,设为:
那么,单口网络的功率为:
(前一项为常量,与t无关;后一项为两倍电源频率。)
那么可以得到其草图(常量为图中红线。):
3.7.2有功功率
也称平均功率。用大写字母P表示。
定义式(积分后取平均。):
(积分内的后一项为偶函数,对一个周期内积分得到0。)
可以发现,瞬时功率中的那条红线,就是平均功率的值:
对于纯电阻电路来说,其阻抗角,其功率为:
对上面的式子不难发现,差项总是大于等于0,所以电阻始终吸收功率和消耗能量。
对于纯电感电路来说,其阻抗角,其功率为:
可见,在半个周期内p>0,在另半个周期内p<0。所以有功功率为0,即电感不消耗能量,但需要注意的是,电感的瞬时功率并不为零。
对于纯电容电路来说,其阻抗角,其功率为:
可见,在半个周期内p>0,在另半个周期内p<0。所以有功功率为0,即电容不消耗能量,但需要注意的是,电容的瞬时功率并不为零。
电阻、电感和电容都是无源元件。
电感和电容不消耗功率,只进行能量的交换。
3.7.3功率因数
由有功功率定义式可知,网络吸收的平均功率P与
的大小密切相关。
于此,用表示功率的利用程度,称
为功率因数,
为功率因数角。
- 在RLC的无源单口网络中,有:
- 当
>0时,单口网络呈感性,此时电流滞后于电压
的角度,称功率因数滞后。
- 当
<0时,单口网络呈容性,此时电流超前于电压
的角度,称功率因数超前。
- 在实际工程中,为了提高电能的利用效率,会采用某些措施力求提高功率因数。
如,使用镇流器的日光灯电路,可以等效为一个电阻和电感的串联,那么其功率因数小于1(!!电阻是等于1的,但时加上电感就小于1了!!)。
由于功率因数小于1,那肯定不满足工程目标啊,所以就要求线路提供比额定电流更大的电流,而线路电流增大会增加传输线的损耗。(前因后果理解好。) - 提高日光灯电路的功率因数,一个常用的办法就是在它的输入端并联一个适当的电容,来抵消电感分量(相量功率角
一增一减,自然能使得功率因数更接近于1。),使其端口特性接近于一个纯电阻,以便使功率因数接近于1。
课上例题:
(默认了电压是初相为零的正弦形式,然后感性又是电流滞后于电压,所以就得到这个电流相量。)
(看到没,并联电容(补偿)后,相位角变小了。)
(并联后的总有功功率依旧等于只有感性负载的有功功率这个规则,是关键步骤。)
3.7.4无功功率
在RLC的无源单口网络中:
那么瞬时功率可以为(上面已经推到过):
由第二项的cos和差化积,有:
(第一项就是平均功率嘛,你自己试试积分是不是P。)
(第二项是啥?看下面)
无功功率定义:
反映了电源(或外电路)与单口网络的储能元件之间进行能量交换的情况,单位为乏(var)。
对于无源单口网络,可以等效为复阻抗 ,其端口对应的相量图如图:
那么令:
(衡量与电源之间能量交换的情况。)
- 对于纯电感电路,X里只有XL,无功功率为:
- 对于纯电容电路,X里只有XC,无功功率为:
- 对于纯电阻电路,X为0,无功功率为:
- 无源单口网络的总无功功率P等于电路中各储能元件的无功功率之和:
3.7.5视在功率
根据功率的定义式:
令S=UI,表示单口网络吸收平均功率的最大值为UI。
在正弦交流电路中,电压有效值与电流有效值的乘积,称为视在功率S,单位伏安(VA),表示电气设备的容量。
比如说某个发电机的容量为100kVA,而不说其容量为100kW。
平均功率、视在功率、无功功率三者之间的关系:
三者之间可以构成一个直角三角形,称为功率三角形,如图所示。
加上之前介绍到的电压三角形、阻抗三角形,它们互为相似三角形。而阻抗和功率不是相量,所以三角形的边不用画矢量箭头,关系如图所示。
课上例题:
(超前,即<0。)
3.7.6综合例题
(视在功率相加不符合。)
3.8正弦稳态电路中的谐振
3.8.1谐振定义
正弦电路在特定条件下所产生的一种物理现象。
含有L、C的电路,当电路中端口电压与电流同相时,称电路发生了谐振。
如图所示RLC电路,输入端的阻抗 Z = R+jX,当电抗X = 0时,Z = R是纯电阻,端口电压与电流同相,此时电路发生了谐振。
3.8.2串联谐振
(就是发生在RLC串联电路中的谐振。。。)
根据谐振产生的条件,阻抗为:
当X=0时,即时电路发生谐振。
谐振角频率:
谐振频率:
3.8.3使RLC串联电路产生谐振的两种方法
- LC不变,改变角频率
角频率由电路本身的参数决定,一个RLC串联电路只能有一个对应的角频率!当外加频率等于谐振频率时,也就是
,有感抗XL = 容抗Xc,X=0电路发生谐振。
例子:
刷身份证进站,饭卡消费,ETC过闸等,就是利用扫频读出信息。
- 电源频率不变,改变L或C。(通常改变C,电容很好改变,随便面积和长度变变就好了)
改变C,使得感抗XL = 容抗Xc,X=0电路发生谐振。
例子:
收音机调频选台,也就是选择不同频率的信号,就是采用改变C使电路发生谐振的。
3.8.4串联谐振电路的特点
- 相量形式下,电压与电流同相位,电路呈现电阻性 Z = R。
- 串联阻抗
最小,电流
最大。(常常根据这个特征判断电路是否发生了串联谐振。)
- LC串联总电压为零,也就是LC合起来相当于短路,电感电压与电容电压大小相等相位相反,相互抵消,
。此时电源电压全部加在R上,
。
(电阻电压与电流同相,电感电压与电容电压等大反相。)
- 电阻功率
最大,电容无功功率Qc =
,电感无功功率QL =
,总无功功率 Q = Qc + QL = 0。即C与L交换能量,与电源之间无能量交换。
3.8.5特性阻抗和品质因数
- 特性阻抗(characteristic impedance)
:谐振时的感抗或容抗相等。
(特性阻抗与谐振频率无关,仅由电路参数决定。)
- 品质因数(quality factor)Q:表示谐振电路性能的一个指标。
(这是定义式。品质因数与谐振频率无关,同样仅由电路的参数决定。)
品质因数的意义:
电压关系:
可见,Q是谐振时电感电压UL(或电容电压Uc)与端口电压U之比,表示谐振时的电压放大倍数。
相量形式:
若,则Q值很大,电感L和电容C上出现高电压。一方面可以利用,另一方面要避免,详情看下文。
例如:电力工程中电源电压本身比较高,要避免被高压击穿绝缘,损坏设备;而电子工程中经常利用其以获取高压。无线接收机利用LC串联谐振,改变C,对f谐振,使得谐振频率下得到最大电流,进而有最大Uc。
课上例题:
3.8.6并联谐振
(就是发生在RLC并联电路中的谐振。。。)
如图所示RLC并联电路。
根据KCL电流定律有:
若电路处于谐振状态,即阻抗没有虚部,有:
谐振时的角频率:
谐振时的频率:
可见,并联谐振得到的频率与串联谐振是一样的。
3.8.7并联谐振电路的特点
- 相量形式下,电压与电流同相位,电路呈现电阻性 Z = R。
- 并联阻抗
最小,电流
最大。(常常根据这个特征判断电路是否发生了并联谐振。)
- 电感电流与电容电流大小相等相位相反,和为零,互相补偿,电路总电流等于电阻电流。(跟串联形式一致,不过是串联考量的是电压,并联考量的是电流。)
- 谐振时电感电流(或电容电流)与总电流之比称为品质因数,用Q表示。
课上例题:
3.9三相交流电路
3.9.1背景知识
平日电力工程上普遍采用三相制供电。
三相制供电:
由三个幅值相等、频率相同,彼此之间相位互差120度的正弦电压所组成的供电系统。
相较于单相制供电:
- 同尺寸下的发电机,三相交流发电机容量更大。
- 若以相同电压将相同大小的功率输送到相同距离,三相输电线比单相输电线节省材料。
- 三项变压器比单相变压器经济且便于接入负载。
- 三相交流电动机比单相电动机结构简单、体积小、运行特性好。
- 三相制供电是目前世界各国的主要供电方式。
3.9.2三相电源
三相电源是由三个同频率、等振幅而相位依次相差120度的正弦电压源组成的。
假设各个电压源电压分别为Ua、Ub、Uc,分别称为A相、B相、C相,如图所示。
其中A、B、C为该相的始端,X、Y、Z为末端。
若以A相为参考相量,它们的瞬时值表示式和相量形式分别为:
有:
3.9.3三相电源的连接方式
- 星形连接:把三相电源组的末端XYZ接在一点上,并把始端ABC作为与外电路相连接的端点。这种连接方式称为电源的星形连接,常用“Y”标记。
低压三相电力系统大多采用三相四线制接法(星形连接)。
A、B、C三条线称为端线或相线,俗称火线。N称为中线或零线。
每条相线与零线之间的电压称为相电压,用Up表示,可以得到:
每两条相线之间的电压称为线电压,用UL表示,可以得到:
根据相量图可以得到:
可见,线电压的有效值UL与相电压有效值Up有如下关系:
常见数据:
一组电压220V的三相电源连接成三相四线制,其相电压Up=220V,其线电压UL=380V。
- 三角形连接:把三相电源组依次首尾连成一个闭环,由三个连接点分别向外引出三根端线的供电方式。这种连接方式称为三角形连接,常用“
”表示。
由图可见,每相之间的电压与线电压相等,即:
注意:在三角形连接中,每相电源的极性不能接反。
3.9.6三相负载的连接
交流电路中的用电设备,大体可以分为两类:
1)需要接在三相电源上才能正常工作的,称为三相负载。若每相负载的阻抗值和阻抗角完全相等,则为对称负载。
如三相电动机。
2)只需要接在单相电源的负载,可以按照需要接在三相电源的任意一相相电压或线电压上。对于电源来说它们也组成了三相负载,但是各相的复阻抗一般不相等,所以不是三相对称负载。
如照明灯。
3.9.7三相对称星形负载
若三个同样的负载按如图所示的方式连接,称为三相对称星形负载,各阻抗相等。
当接有中线的时候,中线电流显然等于三相电流之和。
而三相电流有效值相等,相位依次相差120度,故其和为零,可见中线上电流为零。
注意,当中线上的电流为零时就可以不接中线。一般的三相对称星形负载是不接中线的,每相负载的电压就是星形三相电源的相电压。
3.9.8三相对称三角形负载
若三个同样的负载按如图所示的方式连接,称为三相对称三角形负载,各阻抗相等。
每相负载的电压就是三相交流电源的线电压。(这个在前文已经多次强调。)
课上例题:
(注意,题目说的是三相四线制的相电压,也就是图a中的相电压。)
(阻抗只有实部,阻抗角为零。)
(将三相四线制中的相电压转为线电压后,三角形连接中线电压等于相电压的情况才成立。)
4.半导体二极管及直流稳压电源
4.1半导体的基础知识
4.1.1半导体
根据物体导电能力来划分,可分为:导体、绝缘体、半导体。
- 导体:容易导电的物体。
- 绝缘体:几乎不导电的物体。
- 半导体:导电性能介于导体和绝缘体之间的物体。在一定条件下可导电。
典型的半导体有硅Si、锗Ge、砷化镓GaAs。
半导体特点:
- 光敏/热敏性:光敏元件、热敏元件,你初高中接触过的。。。
- 掺杂性:在纯净半导体内掺入杂质,导电性能显著增加。(二极管、三极管属于此类。)
4.1.2本征半导体
纯净的(也就是无杂质)、晶体结构(也就是有稳定的结构)的半导体。纯度达到99.9999999%,常称为“九个9”。
硅和锗都是4价元素,它们的外层电子都是4个,称为价电子(在这里可以粗略理解为外层电子就是价电子,实则不然。)。其简化原子结构模型如下图:
本征半导体的共价键结构:每个硅原子的四个价电子分别与周围的四个硅原子的价电子形成共价键。
共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。(理解好这句话噢。)
本征半导体中的两种载流子:(理解好载流子是什么)
(1)自由电子:由于热运动,具有足够能量的价电子挣脱共价键的束缚而成为自由电子。
这一现象成为 本征激发(热激发)。
(2)空穴:自由电子的产生使共价键中留有一个空位置。
自由电子与空穴相碰时,同时消失,称为复合。(不难理解到,可以达到动态平衡状态。)
由于随机热振动致使共价键被打破而产生空穴 - 电子对。
一定温度下,空穴 - 电子对的浓度一定;
温度升高,热运动加剧,挣脱共价键的电子增多,空穴 - 电子对的浓度加大。
空穴的移动:
由于共价键中出现了空穴,在外加能源的激发下,邻近的价电子有可能挣脱束缚补充到这个空穴上。这个电子原来的位置又出现了空穴,其他电子也有可能转移到该位置上。
这样一来,看总体趋势,共价键中就出现了电荷迁移 —— 电流。
规定电流的方向:
与电子移动的方向相反,与空穴移动的方向相同。
本征半导体中,产生电流的根本原因是由于共价键中出现了空穴。
4.1.3杂质半导体
1)N型半导体(Negative):
本征半导体掺入五价杂质元素(如:磷 P)。
在N型半导体中自由电子是多数载流子,它主要由杂质原子提供;(所以是Negative。)
空穴是少数载流子,由热激发形成。
杂质半导体主要靠多数载流子导电。掺入杂质越多,多子(多数载流子的简称)浓度越高,导电性越强,实现导电性可控。
N型半导体的结构示意图如图所示:
所以,N型半导体中的导电粒子有两种:
自由电子 —— 多数载流子;
空穴 —— 少数载流子。
(2)P型半导体(Positive):
本征半导体掺入三价杂质元素(如:硼 B)。
很好理解,在P型半导体中空穴是多数载流子,它主要由杂质原子形成;(所以是Positive。)
自由电子是少数载流子,由热激发形成。
P型半导体主要靠空穴导电,掺入杂质越多,空穴浓度越高,导电性越强。
(一个施主,一个受主。这是相对于自由电子来说的,给出去就是施主,拿进来就是受主。)
P型半导体的结构示意图如图所示:
所以,P型半导体中的导电粒子有两种:
空穴 —— 多数载流子;
自由电子 —— 少数载流子。
4.1.4PN结的形成及特性
PN结的形成:
首先先引入:物质因浓度差而产生的运动,称为 扩散运动。
现在假设有一块半导体,N型与P型拼在一起。
扩散运动使靠近接触面P区的空穴浓度降低,靠近接触面的自由电子浓度降低,产生内电场。
由于扩散运动(你可以理解成形成了反向电流),P区与N区的交界面缺少多数载流子,形成内电场,从而阻止扩散运动的进行。
内电场使空穴从N区向P区,自由电子从P区向N区运动。
漂移运动:因电场作用所产生的运动。
参与扩散运动和漂移运动的载流子数目相同,达到动态平衡,就形成了PN结。
PN结的形成总结:
PN结的特性:
(1)PN结加正向电压 —— 导通:
耗尽层(也就是图中PN结的宽度)变窄,扩散运动加剧,由于外电源的作用,形成扩散电流,PN结处于导通状态。
(电阻起保护作用。)
(2)PN结加反向电压 —— 截止:
耗尽层变宽,组织扩散运动,有利于漂移运动,形成漂移电流。由于电流很小,故可以近似认为其截止。
(3)PN结的单向导电性:
当外加电压使PN结中P区的电位高于N区的电位,称为 加正向电压,简称 正偏;反之,称为 加反向电压,简称 反偏。
- PN结加正向电压时:低电阻、大的正向扩散电流。
- PN结加反向电压时:高电阻、很小很小的反向漂移电流。
在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关。这个电流也成为 反向饱和电流。
4.2半导体二极管
将PN结封装,引出两个电极,就构成了二极管。
二极管是最早诞生的半导体器件之一。利用二极管和其他元器件进行连接,可以构成不同功能的电路,实现对交流电整流、对调制信号检波、限幅和钳位 以及 对电源电压的稳压等多种功能。
4.2.1半导体二极管的分类
(1)点接触型二极管:
用一根很细的金属丝压在光洁的半导体晶片表面,通上脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。
规定:金属丝为正极,半导体薄片为负极。
点接触型二极管只允许通过较小的电流,PN结面积小,结电容小,用于检波、变频和开关等高频电路。
(2)面接触型二极管:
PN结面积较大,允许通过较大的电流。其结电容相对较大,只能在较低的频率下工作。
(3)平面型二极管:
一种特制的硅二极管,不仅能通过较大的电流,且能用于开关、脉冲等高频电路中。
4.2.2二极管的伏安特性
根据半导体理论(假装你已知),PN结的伏安特性方程近似为:
其中:
Is —— 反向饱和电流;UT —— 温度的电压当量。
且于常温下(T=300K),规定有(这个值要记住噢。。。):
那么就可以画出曲线:
若正向电压,那么有:
若反向电压,那么有:
温度对二极管伏安特性的影响:
温度上升时 —— 在电流不变的情况写,管压降 u (请先理解成二极管的两端电压)降低 —— 反向饱和电流 Is 上升 —— 反向击穿电压降低。
简而言之:
温度上升 —— 正向特性左移,反向特性下移。
下图是两个典型的二极管的伏安特性曲线:
接下来对伏安特性曲线的一些名词和参数进行讲解。
(1)正向特性区域
当时,正向电流为零,Uth称为 死区电压 或 开启电压。
当时,开始出现正向电流,并按指数规律增长。
(2)反向特性区域
当时,反向电流很小,且基本不随反向电压的变化而变化。
当时,反向电流急剧增加,U(BR)称为 反向击穿电压。
当PN结的反向电压增加到一定数值时,反向电流突然快速增加,此现象称为PN结的反向击穿。
- 电击穿:可逆。
雪崩击穿、齐纳击穿。(不用管,不需要知道,只需要知道可逆。) - 热击穿:不可逆。
当PN结被电击穿后,若PN结保持 压降高、电流大、功率大,使得PN结点发热,并远超过其耗散功率时,PN结将发生热击穿。这是PN结的电流和温度之间出现恶性循环,最终将导致PN结被烧毁。
(3)二极管伏安特性特征参数(要记住的噢。)
材料 | 开启电压 | 导通电压 |
硅Si | 0.5V | 0.7V |
锗Ge | 0.1V | 0.2V |
4.2.3二极管的主要参数
- 最大整流电流
:二极管长期连续工作时,允许通过二极管的最大整流电流的平均值。
- 反向击穿电压
:二极管反向电流急剧增加时对应的反向电压值。
- 最大反向工作电压
:在实际工作时,最大反向工作电压一般只取反向击穿电压的一半进行计算。
- 反向电流
:在室温和规定的最大反向工作电压下的反向电流值。
课上例题:
4.3晶体二极管电路的分析方法
4.3.1晶体二极管的模型
二极管的数学模型:
由上文,二极管的伏安关系:
其特性曲线可以通过做实际实验测出来。
(但是,有了曲线,有了方程,我咋计算,咋分析呢。)
由曲线可知,它是一种非线性器件,不能直接采用线性电路的分析方法。
那就“以直代曲”,建立二极管的理想线性模型!
二极管的简化模型:
(1)理想模型:
理想二极管,导通时,截止时
。
特性曲线为图中的红线(虚线为实际二极管的特性曲线。):
实际电路中,当二极管正向压降远远小于和它串联电路的电压,反向电流远远小于和它并联电路的电流时,可认为二极管是理想的。
(2)恒压降模型:
当二极管导通时,其压降认为是恒定的,不随电流变化。
即:导通时,截止时
。
特性曲线为图中的红线(虚线为实际二极管的特性曲线。):
(很好理解,导通电压为UD(on),那就等效为 理想二极管+电压源 即可。)
当二极管的正向电压和它串联电路的电压相差不大时,用恒压降模型,该模型提供了较合理的近似。
(3)折线模型:
将二极管特性曲线分为两段折线近似。
即:当时二极管截止,电流为零;当
时二极管导通,导通后的特性曲线为一条斜线。
特性曲线为图中的红线(虚线为实际二极管的特性曲线。):
(4)交流小信号等效模型:
当二极管在静态基础上有一动态信号作用时,则可将二极管等效为一个电阻,称为 动态电阻,也就是 微变等效电路。
如图:
可以看见,动态信号会导致Q点于虚线内波动。Q越高,斜率就越高,倒数后,rd就越小。
一些推导:
该模型用于二极管处于正向偏置条件下,且。
4.3.2晶体二极管电路的分析方法
(1)数值解法(常用于计算机迭代)
根据电路特性得到方程,联立求解。
(2)图解分析法
将方程画于图上,得到的交点即为二极管当前的工作状态。但是由于非线性情况,无法用于计算,只能用于大致分析。
(3)简化模型分析法(最常用的方法)
对不同的简单二极管电路,采用不同的简化模型(就是你刚刚学的。),得到不同的电路进行分析。
1)理想模型:用短路线代替导通的理想二极管。(导通时u=0。)
2)恒压降模型:用恒压降模型等效电路代替二极管。
3)折线模型:用折线模型等效电路代替二极管。
课上例题:
(判断了导不导通,也就是等效为开关是不是闭合。闭合了就是导线了,不要再加上管压降,变成2V了。)
(注意:没有特别说明时,请均采用恒压降模型分析电路。)
(压差大的二极管优先导通,再回头看其他管是否导通。)
(何谓“限幅电路”,如图所示。)
(关1先导通,然后短路了。管2截止。因为短路,Uab = 0V。)
4.4晶体二极管的应用及直流稳压电源
4.4.1直流稳压电源
日常生活中,许多电器通常需要电压和电流稳定的直流电源供电。但是电网提供的通常为单相220V or 三相380V的交流电源。所以利用电网提供的交流电源经过转化而得到直流电源很有必要。
将交流电源经过 变压、整流、滤波、稳压 后变为幅值稳定、电流稳定的直流电的设备,称为 直流稳压电源。
(图中每一个环节的作用都需要理解。具体的每个环节会在下面各小节详述。)
在分析电源电路要特别考虑两个问题:
- 允许电网电压波动 10%。
- 负载有一定的变化范围。(不可能无限变化没范围吧。)
4.4.2小功率整流电路
整流电路:把交流电压转变为直流脉动的电压。
常见的小功率整流电路:单相半波整流、单相全波整流、单相桥式整流 和 单相倍压整流等。
规定:为分析方便,把二极管当作理想模型处理。即:二极管的正向导通电阻为零,反向电阻为无穷大。
- 单相半波整流电路
(1)工作原理
(电路图中,红线为正向,蓝线为反向。)
(2)输出电压 Uo 和电流 Io 的估算
已知变压器副边电压有效值为U2,由积分得到:
(积分为波形和零直线,故上下限为 0~pi,得到的是平均值。)
(3)二极管的参数和选择
二极管承受的最高反向电压就是输入电压U2的最大值,即:
二极管工作的平均电流:(串联电流一样。)
考虑到电网电压波动范围为 10%,二极管的极限参数应当满足:
- 单相桥式整流电路
(1)工作原理
先来看正半周:
(即划红线的线路。“为什么??”)
(不要着急,一步步分析。)
先将二极管都断开,视为没有闭合的开关。然后计算各个二极管的压差,谁的压差大就优先导通。很显然,第一次分析的时候时D1。那么接着视D1为闭合的导线,分析得到D3导通。那D1、D3为导线的情况下,D2、D4就不要来沾边了。所以红线是这么个路径,懂了吧?!
再来看负半周:
(即划蓝线的线路。分析同上,不再赘述。)
(留意四个二极管的方向,一旦装反就会出现问题,无法分析。)
集成的桥式整流电路称为整流堆。
不难发现,把Uo画出来,交流电路变为了连续的直流脉冲。
(2)输出电压 Uo 和电流 Io 的估算
同单相半波整流电路分析方法类似,需要注意的是得到的输出电压周期为pi,不是2pi。
(3)二极管的参数和选择
同样的,每个二极管在截止时所承受的最大反向电压就是输入电压U2的最大值,即:
每只二极管只在输入电压的半个周期内导通,流过每个二极管的平均电流均为输出电流的一半,即:
考虑到电网电压波动范围为10%,二极管的极限参数应该满足:(与半波整流电路对二极管的要求相同。)
整流电路的主要参数(一些小总结):
(1)整流输出电压和电流的平均值
(2)二极管最高反向工作电压和最大平均电流
4.4.3电容滤波电路
(1)工作原理
当 abs(U2) > abs(Uc) 时,有一对二极管导通,对电容是充电,非常小;
当 abs(U2) < abs(Uc) 时,所有二极管均截止,电容通过RL放电,。
理解图中的输出电压变化过程:
(ab:二极管正常导通,对电容充电;
bc:U2比Uc,电容通过RL放电;
cd:电容依旧放电,但是U2降低的太快,所以输出电压为正在放电的电容的两端电压,直至U2再次大于Uc,再次充电。)
滤波后,输出电压平均值增大,脉动幅度变小。
若考虑整流电路的内阻:
(C越大,RL越大,时间常数越大,放电越慢,曲线越平滑,脉动越小。)
(2)二极管的导通角
无滤波电容时:
有滤波电容时(),且只有输入电压大于电容电压时,二极管才导通,此时二极管平均电流增大,峰值很大!
所以,有如下推导关系:
(当导通角小到一定程度时,对二极管的要求极高,非常难以选择。)
(3)电容的选择及输出电压 Uo 的估算
(规定所得的值,不用细究,remember就好。)
优缺点:简单易行,输出电压 Uo 高。C足够大时,交流分量变小。但是招致峰值电流极大,不适合大电流的负载。
4.4.4稳压管稳压电路
稳压管的主要作用:
1)负载变化时,输出电压基本不变;
2)电网电压变化时,输出电压基本不变。
稳压管的伏安特性:
稳压二极管是一种硅材料制成的面接触型晶体二极管,简称 稳压管。
反向击穿后在较大的电流范围内,两端电压基本不变,表现出稳压特性。
(实际上就是并联两个反向的二极管。)
稳压管的主要参数:
- 稳定电压
:稳压管通过额定电流时,两端产生的稳定电压值。该值随工作电流和温度的不同会略微有所改变。
- 稳定电流
:使稳压管工作在稳压状态的最小电流。
- 稳定电流
:使稳压管工作在稳压状态的最大电流。
- 最大耗散功率
:允许的最大功率,
。
- 动态电阻
:工作在稳压状态时,
,
越小,反向击穿特性曲线越陡。
稳压管稳压电路的组成:
若稳压管的电流太小,达不到稳定电流,那就不稳压;若稳压管的电流太大,有可能会因为功耗过大而损坏。因此,稳压管电路中必须有限制稳压管电流的限流电阻R!
R的作用:
1)限流作用,保护稳压管;
2)当输入电压 或 负载电流 变化时,通过该电阻上电压降的变化,一条街稳压管的工作电流,从而起到稳压作用。
稳压原理:
(1)当输入电压U1保持不变,负载电阻RL增大时:
RL
—— Io
—— 电阻变大,分压增大,Uo
—— Iz
—— IR
—— R分到的电阻变大,Uo
(2)当负载电阻RL保持不变,输入电压U1下降时:
U1
—— Uo
—— Iz
—— IR
—— R分到的电阻变小,Uo
稳压管稳压电路的主要性能指标:
(1)输出电压:
(2)输出电流:
(3)输出电阻:
(4)稳压系数:
(第二个等号:除法变乘法;)
(第三个等号:串联电路相等,直接上下约掉了;)
(第四个约等号:R远小于rz。)
稳压管稳压电路的特点:
- 简单易行,稳压性能好。
- 适用于输出电压固定、输出电流变化范围较小的场合。
稳压管稳压电路参数的选择:
(1)输入电压U1的选择:
(2)稳压管的选择:
(3)限流电阻R的选择:保证稳压管既稳压又不损坏。
(R的具体计算方法,看下例题。)
课上例题:
(a:U1 = 15.5V时,管1和管2都被击穿,达稳压状态,Uo = 15.5V;)
(b:U1 = 8.7V时,管1被击穿,管2导通,Uo = 8.7V;)
(c:U1 = 7.5V时,管2优先击穿,管1无效,Uo = 7.5V;)
(d:U1 = 0.7V时,管2导通,管1无效,Uo = 0.7V。)
4.4.5三端集成稳压器
- 稳压管稳压电路简单,但是负载能力差 ,一般只提供基准电压,不作为电源使用。
- 开关型稳压电源效率高,用的也多 。(不讲。)
- 集成稳压器具有输出电流大,输出电压高,体积小等优点,应用广泛。
稳压电源以小功率三端集成稳压器应用最普遍,常用型号如下:
- 固定正电压输出:78 x x 系列;
- 固定负电压输出:79 x x 系列;
- 可调正电压输出:117 / 217 / 317 系列;
- 可调负电压输出:137 / 237 / 337 系列。
对于固定输出的三端稳压器,详细介绍:
(1)分类,分为78xx和79xx两大系列:
注意:无论什么情况,该稳压器32接口两端的电压必为 xxV。
特点:稳压性能良好,外围原件简单,安装调试方便,价格cheap。
(2)基本应用:
将输入端接入整流滤波电路的输出,将输出端接入负载电阻。
而且为了获得更好的效果,通常会在稳压器周围添加一些元件,如图所示。
(两个电容理解就好,其实导线相当于小小小电感,懂我意思就行。)
(这个二极管主要是为了不让新添的电容放电回去,扰乱了。)
一般情况下,输入与输出之间的电压差不得低于3V。
比如:Uo = 12V,那输入端U1 = 9 ~ 15V之间,否则会引起别的问题。
(3)具有正、负两路输出的稳压电路:
很好理解,因为78和79分别是正电压和负电压输出的。拼接在一起就好了,如图。
(4)输出电压扩展电路:
(这里需要你理解明白一点了,不然不会计算,不过其实很简单,你听我说就知道了。)
比如,有这个扩展电路:
现在我要计算得到的Uo。
首先是稳压器的32接口是 xxV,这里记为Uo',然后直接看结果式子。
(把R2的电流分成两部分来看,一部分是流过R1的电流,由Uo‘计算得到;另一部分是Iw。加起来一算,是不是就是图中这个式子辣。)
(当然,它这式子只是为了区分出来,算的时候根据自己的正确理解算就好了。)
注意:Iw很小,可以忽略!
调节R2,就能调节输出电压Uo。
同样的,该电路也是一样的分析方法,不过结果这里省略了Iw。
(图中的新玩意是什么隔离作用,不用太在意。)
对于固定输出的三端稳压器,不多介绍:
(1)分类:
- 正电压输出可调:CW117、CW217、CW317;
- 负电压输出可调:CW137、CW237、CW337。
1 - 军品级:为金属壳或陶瓷封装,工作温度-55°~150℃;
2 - 工业品级:金属壳或陶瓷封装,工作温度-25°~150℃;
3 - 民品级:多为塑料封装,工作温度0~~150℃。
特点:可以实现输出电压的连续可调,其电压调整率、电流调整率和纹波系数和纹波抑制比都比78xx和79xx高几倍。
(2)基本应用:
(这个东西也是右下角两个接口的电压是输出电压Uref。)
(得出来的式子也是大差不差,同样的分析方法。)
课上例题:
(没懂,估计是隔离器的作用我不知道,我去问问老师。)
4.5半导体器件型号命名及方法