- 博客(494)
- 资源 (5)
- 收藏
- 关注
原创 Linux awk 命令详解:文本处理中的“轻量级 SQL”
awk虽然诞生于上世纪 70 年代,但其简洁而强大的设计使其至今仍是系统管理、日志分析和数据预处理领域不可或缺的工具。对于熟悉 SQL 的用户而言,理解awk的关键在于将其视为“面向文本的流式查询语言”——你不是在写程序,而是在对一张隐式的表执行查询。掌握awk,意味着你可以在没有数据库的环境中,仅凭一行命令完成大多数常见的数据分析任务。这正是 Unix 哲学的体现:用简单工具组合解决复杂问题。
2026-01-30 19:12:43
435
原创 Linux sed 命令详解:文本流的增删查改利器
sed的本质,正如其名所示,是一个“流编辑器”——它通过简洁的命令语言,实现了对文本流的高效、可编程的增、删、查、改操作。掌握sed,不仅能提升日常命令行工作效率,还能为自动化运维和文本处理脚本提供强大支持。对于任何 Linux 用户或开发者而言,sed都是一项值得深入学习的基础技能。
2026-01-30 19:11:29
396
原创 Linux grep 命令详解:文本查询中的过滤器
尽管现代工具如ripgreprg)在性能和功能上有所超越,但grep因其简洁、稳定和无处不在,依然是 Linux 用户不可或缺的基本技能。理解grep作为“过滤器”的本质,有助于我们更自然地将其融入到命令行工作流中,发挥 Unix 工具链组合的强大威力。掌握grep,就是掌握了一种高效与文本对话的方式。
2026-01-30 19:09:56
253
原创 从 Shell 脚本到 Docker Compose:环境管理方案的选择
在容器化部署中,Dockerfile是定义应用运行环境的核心文件。本文将演示如何将一个简单的Flask应用构建成Docker镜像,同时支持实时更新代码并在宿主机查看日志,开发环境直接运行和生产环境使用Gunicorn。
2026-01-29 21:13:22
38
原创 Cython:为 Python 注入 C 的速度
Cython 并不是一个独立的 Python 实现,而是一种编程语言和编译器工具。它是 Python 的超集(superset),兼容绝大多数 Python 语法,并在此基础上引入了静态类型声明等特性,使得代码可以被编译为高效的 C 代码,最终生成可在 CPython 中直接导入的扩展模块(如.so或.pyd文件)。在 Python 的易用性之上,叠加 C 语言的性能优势。
2026-01-29 20:01:35
430
原创 MinIO 入门指南:轻量级、高性能的对象存储
MinIO 是一个用 Go 语言编写的分布式对象存储服务器,完全兼容 Amazon S3 API。高性能:官方测试显示,在 NVMe SSD 上可达到 183 GB/s 的读取速度。S3 兼容:无缝对接任何支持 S3 协议的客户端或工具(如 AWS CLI、s3cmd、Rclone 等)。轻量简洁:单个二进制文件,无外部依赖,易于部署和维护。开源免费:采用 Apache License v2.0 开源协议。安全性强:支持 TLS、身份认证、访问控制策略(IAM)、加密(静态/传输中)等。
2026-01-29 00:21:43
374
原创 multiprocessing.Pool 中 starmap 与 imap_unordered
starmap和各有优势,没有绝对的“更好”,只有“更适合”。要简单、有序、完整结果 → 选starmap。要高效、低内存、快速响应 → 选。最重要的是理解:它们的并行执行效率是一样的,区别仅在于结果如何返回给主程序。掌握这一点,就能避免误以为starmap“效率低”或“更并行”——实际上,工作进程在两种模式下都全力以赴,从未停歇。
2026-01-28 23:51:23
565
原创 Python 中的 lru_cache:提升函数性能的利器
lru_cache是functools模块提供的一个装饰器,用于自动缓存函数的返回值。其名称中的 “LRU” 代表 “Least Recently Used”(最近最少使用),即当缓存达到容量上限时,会自动移除最久未被访问的条目,以腾出空间存储新的结果。通过缓存机制,lru_cache能显著减少重复计算,尤其适用于具有重叠子问题的递归算法(如斐波那契数列、动态规划等)。是 Python 中一个轻量级但高效的缓存工具。
2026-01-28 23:19:14
811
原创 Linux 环境变量的作用范围与全局设置方法
场景方法是否影响当前 Shell是否持久临时测试是否脚本内使用否(子进程)否让脚本影响当前 Shell是否(除非写入配置文件)当前用户永久生效写入~/.bashrc或~/.profile新会话生效是所有用户永久生效或新会话生效是理解环境变量的作用域和加载机制,有助于更高效地配置开发环境、部署应用或管理系统。在实际操作中,请根据需求选择合适的方法,并注意系统级配置可能影响所有用户,应谨慎修改。
2026-01-28 23:14:35
629
原创 Python JSON 库深度对比:json、simdjson 与 orjson
json“快”不是绝对的,而是相对于你的使用模式。如果你只是读取 JSON 并立即消费,simdjson是王者;但如果你需要修改数据并写回,orjson才是真正的性能赢家;而对于大多数普通项目,标准json依然是最稳妥的选择。不要被“10 倍加速”的宣传迷惑——理解你的数据流,才是性能优化的第一步。
2026-01-25 19:34:48
1027
原创 Python 进度条神器:tqdm 使用指南
tqdm 是 Python 开发者提升用户体验和调试效率的利器。无论是训练深度学习模型、处理大规模数据,还是简单的脚本任务,只需一行代码,就能让你的程序“看得见进度”。记住:好的工具不在于复杂,而在于恰到好处的优雅。赶快在你的下一个项目中试试 tqdm 吧!
2026-01-25 16:59:42
603
原创 并行处理策略对比调研:文件级 vs 行级
在文件数量适中、大小呈长尾分布的场景下,文件级并行策略因其更低的调度开销、更高的 I/O 效率和更好的大文件处理能力,显著优于行级并行。若未来面对极大量小文件(如百万级),可考虑混合策略(如先聚合小文件再并行),但在当前 2000 文件规模下,file-level 是更优选择。
2026-01-25 13:23:46
732
原创 高效批量更新 DuckDB:使用临时表同步 Parquet 文件数据
通过临时表与批量 SQL 操作,我们可以构建一个简洁、高效、可靠的 Parquet 到 DuckDB 同步流程。充分利用 DuckDB 的内建能力;避免应用层数据搬运;保证事务性和性能;易于维护和扩展。无论你是构建本地分析流水线,还是处理每日增量数据更新,这一模式都值得纳入你的工具箱。
2026-01-24 21:40:21
646
原创 SQL 中如何用 RANDOM() 实现高效随机抽样?
方法是否精确性能适用场景否高快速探索、近似分析是低小数据集、精确数量需求近似极高超大表、允许一定偏差推荐做法日常分析用足够高效;正式报告或实验用或哈希分桶保证可复现性。随机抽样看似简单,实则暗藏玄机。理解其背后的统计原理和数据库实现差异,能帮助你在性能与精度之间做出更明智的选择。我需要的是“快”,还是“准”?
2026-01-24 21:25:07
899
原创 为什么越来越多开发者选择 PostgreSQL?
PostgreSQL 不只是一个数据库,而是一个可编程的数据平台。它平衡了 严谨性、灵活性与性能,既适合初创公司快速迭代,也能支撑金融、电信等关键业务系统。学习数据库原理构建需要复杂查询的应用处理半结构化数据(如日志、传感器数据)规划长期可维护的系统架构那么,PostgreSQL 很可能就是你一直在找的答案。GUI 工具:pgAdmin(官方)、DBeaver(跨平台)、TablePlus(Mac/Win)现在就打开终端,输入,开启你的 PostgreSQL 之旅吧!
2026-01-24 21:11:50
643
原创 使用 Hadoop MapReduce 完成 JSON 数据的多维度统计与树状结构构建
内容级的多维度统计;存储结构的树状重建。这种“计算 + 结构”联合输出的方式,特别适合数据治理、资产盘点、日志巡检等场景。相比先聚合再后处理的方案,它更高效、更原子,也更贴近数据本身的组织逻辑。希望本文提供的范式能为你在 Hadoop 上构建结构化分析任务带来启发。
2026-01-24 00:59:17
895
原创 用 sys._MEIPASS 正确加载 PyInstaller 资源
PyInstaller 在--onefile模式下会将资源解压到临时目录,路径由指出。通过判断是否在打包环境中。编写函数是处理资源路径的标准做法。配合--add-data参数,即可实现开发与发布无缝切换。
2026-01-23 23:47:10
300
原创 单机多环境 Airflow 部署最佳实践
✅ 每个环境拥有独立的 Webserver、Scheduler、Worker、Redis 实例;✅ MySQL 外置,通过不同数据库名实现元数据隔离;✅ 代码通过 Git 分支(maindev)管理,路径隔离(vs✅ 使用 Docker Compose + override 实现声明式、可复现部署;✅ 容器直接运行scheduler主进程;✅ 以非 root 用户运行,移除特权模式,挂载只读 DAG;✅ 所有配置文件纳入版本控制,确保可追溯性与一致性。
2026-01-22 23:37:57
593
原创 Hadoop distcp 命令详解:高效跨集群数据复制
distcp是 Hadoop 生态中不可或缺的数据迁移工具。理解其选项含义,尤其是并行度、分块传输、增量更新、跳过校验、直接写入等关键参数,能让你在面对 PB 级数据复制任务时游刃有余。合理调优,不仅提升效率,还能保障集群稳定性和数据一致性。提示:生产环境建议先在小数据集上测试参数组合,再全量执行!特别是向对象存储复制时,务必验证-direct是否生效。
2026-01-22 22:08:43
678
原创 在 Airflow 中安全使用多进程的正确方式
方式是否可行说明在 Airflow 任务中直接使用❌守护进程限制导致失败通过subprocess调用独立脚本,脚本内使用多进程✅推荐做法,安全可靠通过将多进程逻辑封装在外部脚本中,既能绕过 Airflow 的进程模型限制,又能保持任务的清晰性和可维护性。这是在 Airflow 中实现 CPU 密集型并行任务的标准实践。
2026-01-22 21:46:09
238
原创 Python 多进程启动方式性调研
在 Python 的forkforkserver和spawn。长期以来,社区中流传着一种观点:“spawn启动慢,效率低,只适合 Windows;而fork快如闪电,是 Linux 下的首选”。但这种观点是否真的成立?尤其是在复用进程池的场景下?本文通过四个精心设计的示例代码,对比这三种启动方式(以及一个生产者/消费者模型),验证:一旦合理复用进程(如使用进程池),不同启动方式的性能差距其实非常小,甚至可以忽略不计。所谓“spawn很慢”,往往是因为误解了其适用场景。forkfork。
2026-01-22 21:24:32
569
原创 Airflow Dockerfile 使用示例(Recipes)
用户有时会分享一些使用 Docker 镜像的有趣方式。我们鼓励用户将这些用法贡献到文档中,以便对社区其他成员有所帮助——您可以通过提交 Pull Request 的方式进行贡献。以下章节汇总了这些实用知识。
2026-01-22 00:32:26
351
原创 构建Ariflow镜像
你可以自定义镜像的更多方面——例如在安装 apt 依赖项之前执行的额外命令,或添加额外的源来安装你的依赖项。你可以在下面看到所有描述的参数,但这里有一个相当复杂的命令示例,用于根据此评论中的示例来自定义镜像:如果你需要使用自定义的 PyPI 包索引,你还可以在构建镜像时通过添加文件来自定义构建过程中使用的 PYPI 源。这个pip.conf不会被提交到仓库(它被添加到.gitignore中),也不会出现在最终的生产镜像中。它只在镜像的构建阶段被添加和使用。因此,这个pip.conf。
2026-01-22 00:26:27
785
原创 在 Docker 中运行 Airflow
当您想在本地运行 Airflow 时,可能希望使用包含一些额外依赖项的扩展镜像——例如,您可能添加新的 Python 包,或将 Airflow 提供商升级到更高版本。这可以通过在中指定build: .并在旁边放置一个自定义 Dockerfile 来轻松实现。然后您可以使用命令构建您的镜像(只需执行一次)。您也可以在运行其他命令时添加--build标志,以便在运行时动态重建镜像。有关如何通过自定义提供程序、Python 包、apt 包等扩展镜像的示例,请参阅构建镜像。
2026-01-22 00:24:54
565
原创 重组Docker 命令:符合认知逻辑的分类方式
Docker 官方的命令分类方式侧重于技术模块划分,而本文提出的分类方法则以用户的实际操作流程为主线:从观察系统、获取资源、启动服务,到管理、调试、清理,最终扩展到网络、存储和编排。这种结构更贴近人类的认知逻辑,有助于降低学习曲线,提升使用效率。无论是新手入门、团队培训,还是编写内部文档,采用这种“以用户为中心”的命令组织方式,都能带来更好的体验和更高的生产力。希望这一思路能为你理解和使用 Docker 提供新的视角。
2026-01-20 22:46:20
809
原创 YAML 教程:5 分钟快速入门
YAML 最初代表 “Yet Another Markup Language”(又一种标记语言),但后来被重新定义为 “YAML Ain’t Markup Language” ——强调它不是标记语言,而是一种专为数据设计的序列化格式。YAML 与 JSON 和 XML 类似,但语法更简洁、可读性更强。容器编排(如 Kubernetes)自动化运维(如 Ansible)CI/CD 流水线(如 GitHub Actions、GitLab CI)应用配置文件(如 Spring Boot 的。
2026-01-20 22:12:38
364
原创 YAML 锚点与引用:在 Docker Compose 中实现配置复用的最佳实践
x-YAML 的锚点与合并键机制是编写简洁、可维护的文件的重要工具。它不仅减少了重复代码,还增强了配置的一致性和可演进性。理解并合理运用这一特性,能够显著提升基础设施即代码(IaC)的开发效率与质量。对于初学者而言,建议从简单的公共环境变量或卷挂载开始尝试;对于复杂项目,则可结合.env文件与锚点,构建灵活而健壮的本地开发或测试环境。
2026-01-20 20:34:19
537
原创 Python 中 subprocess.run 与 subprocess.Popen 解析
和并非互斥,而是互补。前者适合绝大多数日常任务,后者则为复杂场景提供必要控制力。理解它们的参数、行为差异及适用边界,是编写健壮、高效系统脚本的关键。默认使用;仅在确实需要流式处理或交互时,才退回到Popen;始终考虑安全性、可移植性和错误处理。通过合理选择和正确使用这两个接口,你可以在 Python 中高效、安全地集成任何外部命令或程序。
2026-01-20 00:36:08
1041
原创 从零搭建 Apache Airflow 2.4.3 环境
通过以上步骤,我们成功搭建了一个基于 MySQL + Redis + Celery 的 Apache Airflow 2.4.3 开发环境。该架构支持多 Worker 分布式执行任务,适合进一步开发复杂的数据管道。后续可根据需要添加 DAG 文件、配置监控或集成其他系统(如 S3、Kubernetes 等)。
2026-01-18 22:48:25
965
原创 S3 与 HDFS:对象存储 vs 分布式文件系统
HDFS是为“存算一体、高吞吐批处理”而生的传统方案,适合已有 Hadoop 投资、对数据本地性有强依赖的场景。S3则面向“存算分离、弹性扩展、API 标准化”的现代架构,更适合构建统一数据湖底座,支持多引擎、多租户访问。对于新建系统,若团队具备容器化、微服务运维能力,且希望降低存储层耦合度,自建 S3 兼容存储是更具前瞻性的选择。而对于高性能科学计算、电信级实时批处理等对 I/O 延迟极度敏感的场景,HDFS 仍有其不可替代的价值。最终,技术选型应基于业务负载特征、团队技能栈与长期演进路径综合判断。
2026-01-18 21:09:42
784
原创 Python uv:新一代高性能包与虚拟环境管理工具
高性能:依赖解析、下载和安装过程高度优化,速度远超传统工具。功能整合:单一工具覆盖虚拟环境创建、包安装、依赖分析等场景。兼容性强:支持 PyPI、本地路径、Git 仓库、等标准格式。使用门槛低:命令设计与pip一致,学习成本极低。uv 代表了 Python 工具链向高性能与一体化方向的重要演进。对于新项目或希望提升开发效率的团队,uv 提供了一个成熟且高效的替代方案。其开源项目持续更新,已在多个生产环境中得到验证。
2026-01-15 23:49:50
236
原创 使用 Elasticsearch 构建电商商品搜索系统
通过本文的步骤,你已在本地 Ubuntu 环境中完整搭建了一个基于 Elasticsearch 的电商搜索原型。从安装插件、创建索引、导入数据到执行复杂查询,每一步都可复现和调试。这不仅加深了对 Elasticsearch 工作原理的理解,也为后续开发真实项目打下坚实基础。建议在此基础上继续探索:相关性调优、同义词配置、拼音搜索、向量检索等高级功能,逐步构建更智能的搜索体验。
2026-01-15 20:07:48
762
原创 Hadoop 命令体系完全指南
Hadoop 生态系统庞大而灵活,掌握其核心命令是高效开发、运维和调试的基础。本文将三篇独立博客整合为一篇完整手册,系统梳理 Hadoop 入口命令结构、HDFS 文件系统操作 和 MapReduce(特别是 Streaming)任务提交 的全部关键内容,助你全面掌控 Hadoop 命令行工具链。
2026-01-11 18:58:40
634
原创 Hadoop 流处理
如前所述,当 Map/Reduce 框架从 Mapper 的标准输出读取一行时,它会将该行拆分为 Key/Value 对。默认情况下,行中第一个制表符之前的前缀是 key,行的其余部分(不包括制表符)是 value。但是,您可以自定义此默认值。您可以指定除制表符(默认)以外的字段分隔符,并且可以指定行中的第 n 个(n >= 1)字符而不是第一个字符(默认)作为 Key 和 Value 之间的分隔符。
2026-01-11 15:11:32
829
原创 Git 核心工作流:从四大区域到五大操作
熟练掌握 Git 不仅是开发者的基本功,更是高效协作的基石。本文通过 四大区域模型(工作区、暂存区、本地仓库、远程仓库)建立了清晰的认知框架,并将操作归纳为 五大模块(基本、分支、合并、撤销、暂存),覆盖了从初始化到日常开发的核心场景。建议结合实际项目反复练习,逐步内化这些操作背后的原理。记住:理解原理 > 死记命令,善用查阅官方文档,你将真正驾驭 Git 的强大能力。
2026-01-10 23:15:42
735
原创 PyCharm 远程开发详解
PyCharm 的远程开发能力为 Python 开发者提供了极大的灵活性。对于大多数团队而言,SSH 部署 + 远程解释器 是平衡易用性与功能性的首选;而对于追求极致资源隔离或云端开发的用户,JetBrains Gateway 架构 则代表了未来方向。无论选择哪种方式,合理利用远程开发不仅能提升硬件资源利用率,还能确保开发、测试、生产环境的一致性,是现代 Python 工程实践的重要组成部分。建议根据项目规模、团队协作模式及基础设施条件,选择最适合的远程开发策略。
2026-01-09 23:22:35
687
原创 Airflow 如何让任务编排更清晰
传统的手写调度方式将流程控制、状态更新和业务逻辑混杂在一起,导致代码难以维护和扩展。业务开发者只需提供无状态的、可复用的函数。通过 DAG 文件用简洁的语法声明任务间的依赖关系。Airflow 负责执行调度、状态跟踪、失败重试、日志收集和可视化。任务编排,本就不该是业务代码的一部分。把流程交给 Airflow,把逻辑留给自己。如果你正在维护一堆“自研调度脚本”,是时候考虑迁移到 Airflow 了。它不会替你写业务逻辑,但它会让你的 pipeline 更健壮、更清晰、更易维护。
2026-01-09 00:09:52
764
原创 十个值得了解的 Linux 高价值功能/工具
用systemd管服务 +journalctl看日志 +htop监控资源用inotify监控配置 + 自动 reload 服务用firewalld开端口 +ss验证是否生效你不需要记住所有命令,但要知道“有这么个东西存在”。遇到问题时,就能快速想到:“啊,是不是可以用 XXX 来解决?
2026-01-07 00:13:52
271
禅与摩托车维修艺术
2018-05-28
人件集:人性化的软件开发
2018-05-28
深入浅出面向对象分析与设计
2018-01-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅