掌握描述变化、优化和连续世界的核心数学工具
微积分是现代科学和人工智能的基石,它提供了描述变化和优化的数学工具。从预测天体运动到优化深度学习模型,从计算曲线长度到模拟流行病传播,微积分无处不在。当我们使用GPS导航、观看电影特效或分析股票市场时,背后都有微积分的力量在支撑。
本文将介绍微积分的核心概念,并通过Python代码展示其实际应用。我们使用NumPy和Matplotlib库进行计算和可视化。
import numpy as np
import matplotlib.pyplot as plt
1. 导数和微分:理解瞬时变化
1.1 导数的定义与几何意义
导数描述了函数在某一点的瞬时变化率。从几何角度看,它代表了函数曲线在该点的切线斜率。
对于函数 f(x)f(x)f(x),在点 xxx 处的导数定义为:
f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}f′(x)=h→0limhf(x+h)−f(x)
这个定义捕捉了当 hhh 趋近于0时,函数变化的极限行为。
# 定义函数 f(x) = x^2
def f(x):
return x**2
# 数值计算导数
def numerical_derivative(f, x, h=1e-5):
return (f(x+h) - f(x-h)) / (2*h)
# 在x=1处计算导数
x_point = 1.0
derivative = numerical_derivative(f, x_point)
# 可视化
x_vals = np.linspace(0, 2, 100)
plt.figure(figsize=(10, 6))
plt.plot(x_vals, f(x_vals), label='f(x) = x²')
plt.scatter(x_point, f(x_point), color='red', s=100)
plt.plot(x_vals, derivative*(x_vals-x_point) + f(x_point),
'r--', label=f'切线: 斜率 = {
derivative:.2f}')
plt.title('导数:曲线切线的斜率')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()
plt.grid(True)
plt.show()
2. 偏导数:多变量函数的导数
2.1 偏导数的概念
当函数有多个变量时,我们使用偏导数来衡量函数在某一变量方向上的变化率,同时保持其他变量不变。
对于函数 f(x,y)f(x,y)f(x,y),关于 xxx 的偏导数定义为:
∂f∂x=limh→0f(x+h,y)−f(x,y)h\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}∂x∂f=h→0lim

最低0.47元/天 解锁文章
4192

被折叠的 条评论
为什么被折叠?



