0x00 前言
- W e m u s t k n o w . W e w i l l k n o w . We\; must\; know.\; We\; will\; know. Wemustknow.Wewillknow.
——David Hilbert
微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
1x01 微分(其一)一一瞬时变化率?极限的严格定义
想象一辆汽车,其所走过的路程 ( s ) (s) (s) 和时间 ( t ) (t) (t) 的关系为 s = t 2 s=t^2 s=t2 ,现在要求速度 ( v ) (v) (v) 与时间的关系。
我们先把问题简化一下,我们现在只求汽车在第 5 5 5 秒时的瞬时速度。有头绪吗?
三——
二——
一——
好,揭晓答案。我们先把时间定位在 5 − 5.1 s 5-5.1s 5−5.1s 之内。在这个区间内,它的平均速度为:
v = s t = 5. 1 2 − 5 2 5.1 − 5 = 10.1. v=\dfrac s t=\dfrac{5.1^2-5^2}{5.1-5}=10.1. v=ts=5.1−55.12−52=10.1.
现在我们再把时间的范围缩小到 5 − 5.01 s 5-5.01s 5−5.01s 之内。现在它的平均速度为:
v = s t = 5.0 1 2 − 5 2 5.01 − 5 = 10.01. v=\dfrac s t=\dfrac{5.01^2-5^2}{5.01-5}=10.01. v=ts=5.01−55.012−52=10.01.
A n d s o o n , And\; so\; on, Andsoon, 我们继续将时间范围缩小、缩小、再缩小,我们可以看到的是,平均速度逐步 “趋近” 5 5 5 。
但是我们需要一个严格的证明啊!!!
因此,我们定义,对于 t t t 的一个变化量,我们称之为 Δ t \Delta t Δt 。那么我们将 5 − 5 + Δ t 5-5+\Delta t 5−5+Δt 这个时间段内的平均速度则可以表示为:
v = s t = ( 5 + Δ t ) 2 − 5 2 Δ t = 10 + Δ t . v=\dfrac s t=\dfrac{(5+\Delta t)^2-5^2}{\Delta t}=10+\Delta t. v=ts=Δt(5+Δt)2−52=10+Δt.
现在,我们让 Δ t \Delta t Δt 变得很小,很小,非常小,小到几乎为 0 0 0 ,这时原式的值为 10 10 10 。
现在我们用极限的记号来表示这个过程:
lim Δ t → 0 ( 5 + Δ t ) 2 − 5 2 Δ t = 10 \lim_{\Delta t\rightarrow0}\dfrac{(5+\Delta t)^2-5^2}{\Delta t}=10 Δt→0limΔt(5+Δt)2−52=10
我们也可以借此求出通用的公式:
v = 2 t v=2t v=2t
我们就把 v = 2 t v=2t v=2t 称为 s = t 2 s=t^2 s=t2 的导函数,导函数在 n n n 处的值就是原函数在 n n n 处的导数。
B u t n o w , But\; now, Butnow, 问题来了,当 Δ t \Delta t Δt 越来越小时,分母也越来越接近于 0 0 0 ,这该怎么办呢?这时候我们就要来看一下贝克莱怎么说:
. . . . . . 事实上我们必须意识到,牛顿使用 无穷小量 ,正如同使用建筑物的脚手架一样,一旦找到了和它们成比例的线元,便过河拆桥,将其抛弃不谈。然而这一有限的成分(当指 “线性主部” )是借由 无穷小量 的帮助而得出的,故由此成分和比例得出的一切结论(包括微积分的一切定理与应用),都应归功于 无穷小量 :那么这样一个概念必然是首先应该得到解释的。可是 无穷小量 是什么呢?是 “消散增量的速率” ?那这些 消散的增量 又是什么呢?它们既非 有限量 ,也不是 无限小 的量(即,比任何有限量都小的量),然而却又不是 零 。那么我们或许也只好称其为 “消逝量的幽灵” 了吧?
(注:贝克莱在原文中使用了 “Fluxions” 一词,历史上对应今天所言的 “导数” ;然而根据语境,当指用以作商的 微小增量 ,故译为 “无穷小量” )
于是, 【第二次数学危机】 由此揭发。最后终于找到了一个令人比较满意的解答: ϵ − δ \epsilon-\delta ϵ−δ 语言。
ϵ − δ \epsilon-\delta ϵ−δ 语言指出,如果 t t t 和 Δ t \Delta t Δt ( t t t 指原时间)相差与 v v v 和 v + Δ t v+\Delta t v+Δt 之差为等价无穷小,则称 v + Δ t v+\Delta t v+Δt 为 v v v 的极限。
(像是优雅的废话)
通俗一点:
大家知道,我们投篮的时候,篮筐越大越容易进,最极端的情况就是篮筐和篮球一样大。现假设篮球在篮筐正中心时,与篮筐边缘的距离为 ϵ \epsilon ϵ ,如下图所示:
若投篮者与篮筐正中心的距离为 A A A,投篮者的真实投篮距离为 f ( x ) f(x) f(x) ,如果想要将球投进,则需要满足 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon ∣f(x)−A∣<ϵ,即投篮者的力度需要恰到好处,不能太多也不能太少,而力度所对应的便是投篮者的手部弯曲程度,只要弯曲程度在一定范围内(如下图红色范围),就可以将球投进,这个所谓的 “一定范围” ,便是去心领域, 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<∣x−x0∣<δ ,(如果这里 0 0 0 可以取等于,则为不去心邻域),即 x 0 − δ < x < x 0 + δ x_0-\delta<x<x_0+\delta x0−δ<x<x0+δ ,如下图所示:
(啊这迷人的画风)
而函数有极限,就相当于投篮者拥有库里的投射能力,无论 ϵ \epsilon ϵ 多么的小,即无论篮筐大小多么接近篮球大小,投篮者都可以找到一个精确的角度范围将球投进。由此,极限定义可通俗地写为:
对于任意大小的篮筐(无论其与篮球大小之差 ϵ \epsilon ϵ 多么的小),拥有 神射能力的投篮者 (对应于拥有极限的函数)总能找到一个极小的精确的投篮角度范围 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<∣x−x0∣<δ ,将球投进,即投射距离 f ( x ) f(x) f(x) 与最佳距离 A A A 的差距小于 ϵ \epsilon ϵ ,即 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon ∣f(x)−A∣<ϵ .
因此,数学家们解决了 “无穷小的悖论” 。那么下一节,我们来学习通用的求导方法。
1x02 微分(其二)——通用的求导方式&用图像求导
现在,我们来试求 y = x 3 y=x^3 y=x3 的导数。
首先,我们令 x x x 的增量为 Δ x \Delta x Δx , y y y 的增量为 Δ y \Delta y Δy ,可得:
y ′ = Δ y Δ x = ( x + Δ x ) 3 − x 3 Δ x = x 3 + 3 x 2 Δ x + 3 x Δ x 2 + Δ x 3 − x 3 Δ x y^{'}=\dfrac{\Delta y}{\Delta x}=\dfrac{(x+\Delta x)^3-x^3}{\Delta x}=\dfrac{x^3+3x^2\Delta x+3x{\Delta x}^2+{\Delta x}^3-x^3}{\Delta x} y′=ΔxΔy=Δx(x+Δx)3−x3=Δxx3+3x2Δx+3xΔx2+Δx3−x3
化简得:
y ′ = 3 x 2 + 3 x Δ x + Δ x 2 y^{'}=3x^2+3x\Delta x+\Delta x^2 y′=3x2+3xΔx+Δx2
现在,我们让 Δ x \Delta x Δx 趋近于 0 0 0 ,可得:
y ′ = 3 x 2 . y^{'}=3x^2. y′=3x2.
你也可以试着求一下其它形如 y = x n y=x^n y=xn 函数的导数,会发现结果都是 y ′ = n x n − 1 y^{'}=nx^{n-1} y′=nxn−1 .其实是因为在分解时, x n x^n xn 被削去了,剩下的部分只有 n x n − 1 Δ x nx^{n-1}\Delta x nxn−1Δx 只包含一个 Δ x \Delta x Δx ,因此不会被趋近于 0 0 0 ,其他的都可以忽略不计。
上面的是通用的求导方式,即:
f ′ ( x ) = Δ f Δ x = f ( x + Δ x ) − f ( x ) Δ x f^{'}(x)=\dfrac{\Delta f}{\Delta x}=\dfrac{f(x+\Delta x)-f(x)}{\Delta x} f′(x)=ΔxΔf=Δxf(x+Δx)−f(x)
现在我们来试求 y = sin x y=\sin x y=sinx 的导数。
你可以试着用代数方法求,我们这里试着用几何方法。
先看下面的图:
关注 sin \sin sin 和 cos \cos cos 的部分。
现在我们来看下面的一个单位圆:
单位圆的半径为 r = 1 r=1 r=1 。所以,竖直的橙色虚线的长度是 sin α . \sin \alpha. sinα.
竖直的红色虚线的长度是 sin ( α + Δ α ) . \sin (\alpha+\Delta \alpha). sin(α+Δα).
因此 d = D ‾ − D = sin ( α + Δ α ) − sin α . d=\overline{D}-D=\sin (\alpha+\Delta \alpha)-\sin \alpha. d=D−D=sin(α+Δα)−sinα.
现在我们把单位圆放大:
可以看见,我们把弧长放的越大,那么他就越接近一条直线。
现在连接红点和橙点,如下图所示:
图片3中的青线是圆的一条 割线 ,可以想象,当红色点 充分接近 橙色点时(即转动的角度 Δ α \Delta \alpha Δα 充分小时),这条青色的割线将趋近于橙色点处的圆的 切线 。而我们知道, 连结圆心与切点的半径是垂直于切线的 (垂径定理)。所以,在转动的角度 Δ α \Delta \alpha Δα 充分小时,可近似认为图片1中的橙色实线半径 垂直于 这条青色的割线。不仅如此,在转动的角度充分小时,这这条青色的割线还近似于 弧 l l l 。
那么就会出现两个相似三角形,我将它们分别用橙色和青色进行重新进行标识,如下图所示:
则由相似性可知,图片4中的青色三角形在红色点处的角度是 α \alpha α :
则有 d = cos α ⋅ Δ a . d=\cos\alpha \cdot \Delta a. d=cosα⋅Δa.
又 ∵ d = sin ( α + Δ α ) − sin α \because d=\sin(\alpha+\Delta \alpha)-\sin \alpha ∵d=sin(α+Δα)−sinα
∴ Δ sin α Δ α = sin ( α + Δ α ) − sin α Δ α = cos α ⋅ Δ α Δ α = cos α \therefore \dfrac{\Delta\sin \alpha}{\Delta \alpha}=\dfrac{\sin(\alpha+\Delta \alpha)-\sin \alpha}{\Delta \alpha}=\dfrac{\cos \alpha\cdot \Delta \alpha}{\Delta \alpha}=\cos \alpha ∴ΔαΔsinα=Δαsin(α+Δα)−sinα=Δαcosα⋅Δα=cosα.
因此, sin ′ x = cos x . \sin^{'} x=\cos x. sin′x=cosx.
同理可得,
cos ′ x = − sin x \cos^{'}x=-\sin x cos′x=−sinx
tan ′ x = 1 cos 2 x = sec 2 x \tan^{'}x=\dfrac{1}{\cos^2 x}=\sec^2x tan′x=cos2x1=sec2x
cot ′ x = − 1 sin 2 x = − csc 2 x \cot^{'}x=-\dfrac{1}{\sin^2x}=-\csc^2x cot′x=−sin2x1=−csc2x
sec ′ x = sec x ⋅ tan x \sec^{'}x=\sec x\cdot \tan x sec′x=secx⋅tanx
csc ′ x = − csc x ⋅ cot x \csc^{'}x=-\csc x\cdot\cot x csc′x=−cscx⋅cotx
1x03 微分(其三)——求导的几何意义:切线斜率
我们看一个函数 f ( x ) f(x) f(x) 的图像。
现在,我们关注 P , Q P,Q P,Q 两点。 a a a 是经过这两点的割线。现在,我们将 P P P 越来越靠近 Q Q Q , a a a 也逐渐下滑到 b b b 的位置。我们说 b b b 是函数 y = f ( x ) y=f(x) y=f(x) 在 Q Q Q 点处的切线。当然,也可以说是在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处的切线。
你可能会说,我们为什么不把函数图像的切线直接定义成 经过且仅经过图像上一点的直线 呢?其实,很多函数的图像要么 不存在经过且仅经过图像上一点的直线 ,要么 存在很多条经过且仅经过图像上一点的直线 。而且,这样极限的定义还能够牵扯到一个重要的概念——导数。
其实,我们这条切线的方程可以表示为 y = a x + b y=ax+b y=ax+b ,其中 a a a 就是切线的斜率。通过第二节的证明,我们知道,当取的范围足够小(这里为 P Q PQ PQ ),直线就越接近曲线的极限。此时,直线的斜率就是 竖轴增加的步长比上横轴增加的步长 ,也即 Δ y Δ x \dfrac{\Delta y}{\Delta x} ΔxΔy , y y y 的导数。
现在,我们就可以求出函数 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_0 x0 处的切线方程了。下面给出一个例子:
已知函数 f ( x ) = x 2 + 5 f(x)=x^2+5 f(x)=x2+5 ,求出函数 f ( x ) f(x) f(x) 的图像在 x = − 5 x=-5 x=−5 处的切线方程。
首先,我们求出 f ( x ) f(x) f(x) 的导函数:
f ′ ( x ) = Δ f Δ x = [ ( x + Δ x ) 2 + 5 ] − ( x 2 + 5 ) Δ x = 2 x f^{'}(x)=\dfrac{\Delta f}{\Delta x}=\dfrac{[(x+\Delta x)^2+5]-(x^2+5)}{\Delta x}=2x f′(x)=ΔxΔf=Δx[(x+Δx)2+5]−(x2+5)=2x
当 x = − 5 x=-5 x=−5 时, f ′ ( − 5 ) = − 10 f^{'}(-5)=-10 f′(−5)=−10 .
所以 x = − 5 x=-5 x=−5 处的切线的方程为 y = − 10 x + b y=-10x+b y=−10x+b ,现在我们要求出常数项。
将 x = − 5 x=-5 x=−5 带入原方程,得到 y = 50 + b y=50+b y=50+b ,此时 y = 25 y=25 y=25 ,因此 25 = 50 + b 25=50+b 25=50+b ,解得 b = − 25 b=-25 b=−25 。
所以,函数 f ( x ) f(x) f(x) 的图像在 x = − 5 x=-5 x=−5 处的切线方程为 y = − 10 x − 25 y=-10x-25 y=−10x−25 。
同样也很容易得出,函数 f ( x ) f(x) f(x) 的图像在 x = x 0 x=x_0 x=x0 处的切线方程为 y = 2 x 0 x − x 0 2 y=2x_0x-x_0^2 y=2x0x−x02 .
1x04 微分(其四)——导数的计算法则,加法、乘法&链式法则
导数的加法法则为:
( f ( x ) + g ( x ) ) ′ = f ′ ( x ) + g ′ ( x ) (f(x)+g(x))^{'}=f^{'}(x)+g^{'}(x) (f(x)+g(x))′=f′(x)+g′(x)
这灰常的显而易见:
( f ( x ) + g ( x ) ) ′ = Δ f + Δ g Δ x = Δ f Δ x + Δ g Δ x = f ′ ( x ) + g ′ ( x ) (f(x)+g(x))^{'}=\dfrac{\Delta f+\Delta g}{\Delta x}=\dfrac{\Delta f}{\Delta x}+\dfrac{\Delta g}{\Delta x}=f^{'}(x)+g^{'}(x) (f(x)+g(x))′=ΔxΔf+Δg=ΔxΔf+ΔxΔg=f′(x)+g′(x)
(不要怕对无穷小量进行运算,之后会讲到什么时候不适合直接计算 洛不达,洛必错 )
比如说, ( x 2 + 3 x ) ′ = ( x 2 ) ′ + 3 x ′ = 2 x + 3 (x^2+3x)^{'}=(x^2)^{'}+3x^{'}=2x+3 (x2+3x)′=(x2)′+3x′=2x+3.
导数的乘法法则为:
( f ( x ) ⋅ g ( x ) ) ′ = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) (f(x)\cdot g(x))^{'}=f^{'}(x)\cdot g(x)+f(x)\cdot g^{'}(x) (f(x)⋅g(x))′=f′(x)⋅g(x)+f(x)⋅g′(x)
证明如下:
Δ ( f g ) = f ( x + Δ x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x ) \Delta(fg)=f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x) Δ(fg)=<