前向星+链式前向星 ——图的存储

本文详细介绍了前向星和链式前向星两种图存储方式,包括其定义、实现方法及应用场景。通过具体示例展示了如何构建这两种结构,并提供了相应的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载链接

Malash's Blog

一、前向星

1、

我们首先来看一下什么是前向星.

 

前向星是一种特殊的 边集 数组 ,我们把边集数组中的每一条边按照起点从小到大排序,  如果起点相同就按照终点从小到大排序,

并记录下以某个点为起点的所有边在数组中的起始位置和存储长度,那么前向星就构造好了.

 

用 len[i]     来记录所有以i为起点的边的个数

用 head[i]  记录以i为边集在数组中的第一个存储位置.

 

 

 

 

我们输入边的顺序为:

 

1 2

2 3

3 4

1 3

4 1

1 5

4 5

 

那么排完序后就得到:

 

编号:     1      2      3      4      5      6      7

起点u:    1      1      1      2      3      4      4

终点v:    2      3      5      3      4      1      5

 

得到:

head[1] = 1    len[1] = 3

head[2] = 4    len[2] = 1

head[3] = 5    len[3] = 1

head[4] = 6    len[4] = 2

 

2、前向星的 CODE

构建边的结构

struct NODE
{
    int from;      //起点  
    int to;        //终点  
    bool operator < (const NODE & a) const
    {
        return (from == a.from&&to<a.to) || from<a.from;
    }
};

 

 初始化:

void Init()
{
    for (int i = 0; i<m; ++i)            //读入数据  
        cin >> edge[i].from >> edge[i].to;
    sort(edge, edge + m);              //排序  
    memset(head, -1, sizeof(head));
    head[edge[0].from] = 0;
    for (int i = 1; i<m; ++i)
        if (edge[i].from != edge[i - 1].from) head[edge[i].from] = i;
}

 

对图的遍历:

void solve()      //遍历整个图  
{
    for (int i = 0; i < n; ++i)
    {
        for (int k = head[i]; edge[k].from == i&&k<m; ++k)
        {
            cout << edge[k].from << " " << edge[k].to << endl;
        }
    }
}

3、

利用前向星,我们用 O(1) 的时间找到 以 i 为起点的第一条边 ,以 O(len[ i]) 的时间找到以 i 为起点的所有边

前向星适合用来优化稀疏图的深度优先搜索、广搜、单源最短路径(SPFA)

但对所有边按起点排序,以快排计算,至少需要  O(nlog(n)) 的复杂度

所有就引出   链式前向星

 

二、链式前向星

 

如果用链式前向星,就可以避免排序.

前向性的构造主要耗时在频繁的交换,如果将链表也引入前向星,则不用快排就可以实现同样的效果

 

我们建立边结构体为:

struct Edge

{

     int next;

     int to;

     int w;

};

 

其中   edge[i].to——表示第 i 条边的终点,

          edge[i].next ——表示与第 i 条边同起点的下一条边的存储位置,

          edge[i].w——边权值.

          head[]——用来表示以i为起点的第一条边存储的位置,实际上你会发现这里的第一条边存储的位置其实

          在以i为起点的所有边的最后输入的那个编号.

           head[]数组一般初始化为-1,对于加边的add函数是这样的:

 

void add(int u,int v,int w)  
{    
    edge[cnt].to = v;  
    edge[cnt].next = head[u];
    edge[cnt].w = w;  
    head[u] = cnt++;  
}  

初始化cnt = 0,这样,现在我们还是按照上面的图和输入来模拟一下:

 

edge[0].to = 2;     edge[0].next = -1;      head[1] = 0;

edge[1].to = 3;     edge[1].next = -1;      head[2] = 1;

edge[2].to = 4;     edge[2],next = -1;      head[3] = 2;

edge[3].to = 3;     edge[3].next = 0;       head[1] = 3;

edge[4].to = 1;     edge[4].next = -1;      head[4] = 4;

edge[5].to = 5;     edge[5].next = 3;       head[1] = 5;

edge[6].to = 5;     edge[6].next = 4;       head[4] = 6;

 

很明显,head[i]保存的是以i为起点的所有边中编号最大的那个,而把这个当作顶点i的第一条起始边的位置.

 

这样在遍历时是倒着遍历的,也就是说与输入顺序是相反的,不过这样不影响结果的正确性.

比如以上图为例,以节点1为起点的边有3条,它们的编号分别是0,3,5   而head[1] = 5

 

我们在遍历以u节点为起始位置的所有边的时候是这样的:

for(int i=head[u];~i;i=edge[i].next)
 // 当 i等于 -1 的时候停止, -1 取反为 0

那么就是说先遍历编号为5的边,也就是head[1],然后就是edge[5].next,也就是编号3的边,然后继续edge[3].next,也

就是编号0的边,可以看出是逆序的.

### 关于二叉树与链式前向星的实现及应用 #### 什么是链式前向星链式前向星是一种基于数组模拟链表的方式用于存储稀疏的数据结构。它的核心在于通过两个数组 `head` 和 `next` 来记录边的信息,使得每条边可以快速访问到与其相连的其他边。其实现的关键语句如下: ```c++ next[++idx] = head[from]; head[from] = idx; ``` 上述代码片段展示了如何动态更新一条新边并将其链接至已有边列表中[^1]。 #### 如何利用链式前向星构建二叉树? 尽管链式前向星通常被用来表示一般性的结构,但它同样适用于特定类型的树形结构——比如二叉树。对于一棵具有 N 个节点的二叉树来说,可以通过给定的后序遍历和中序遍历来重建该树,并进一步采用链式前向星的形式对其进行编码存储[^3]。 具体过程涉及以下几个方面: - **输入解析**:读取用户提供的两组序列(即后序与中序),依据它们之间的关系推导出各节点间的父子关联; - **建模映射**:将这些逻辑上的连接转换成实际存在于内存中的指针或者索引形式; - **层次输出**:最后按照题目需求执行某种顺序(如层序)打印整个重构后的二叉树形态。 这里提供一段伪代码来说明这一流程的一部分功能实现: ```cpp struct Edge { int to, next; } edge[MAXM]; int head[MAXN], cnt; void addEdge(int from, int to){ edge[cnt].to = to; edge[cnt].next = head[from]; head[from] = cnt++; } ``` 此函数定义了一个简单的添加边操作,其中 `from` 表示起始顶点而 `to` 则为目标终点;每次调用都会创建一个新的边缘对象并将之挂载到对应出发位置所维护的一系列相邻项目之[^5]。 #### 应用场景分析 除了作为基础工具支持诸如单源最短路径计算等问题求解外,在处理更复杂的组合优化挑战时也经常能看到此类技术的身影。例如当面对大规模网络拓扑数据分析任务时,高效可靠的形表达方案就显得尤为重要了。另外值得注意的是,“树”的概念本身还可以扩展延伸至更多领域当中去探索发现新的可能性,像面提到过的寻找“重心”就是其中一个典型例子[^2]。 #### 总结 综上所述,无论是理论层面还是实践角度考虑,掌握好关于“链式前向星”以及围绕着它展开的各种算法都是非常有益处的事情。这不仅能够帮助我们更好地理解计算机科学内部那些抽象却又精妙绝伦的设计原理,而且还能极大地提升解决现实世界难题的能力水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值