链式前向星——最完美图解

链式前向星是图的存储方法之一,结合边集数组和邻接表,适用于快速访问顶点邻接点。本文介绍了链式前向星的结构、建立过程以及在无向图中的应用,强调其在算法竞赛中的实用性。
摘要由CSDN通过智能技术生成

图的存储方法很多,最常见的除了邻接矩阵、邻接表和边集数组外,还有链式前向星。链式前向星是一种静态链表存储,用边集数组和邻接表相结合,可以快速访问一个顶点的所有邻接点,在算法竞赛中广泛应用。

链式前向星存储包括两种结构:

  1. 边集数组:edge[ ],edge[i]表示第i条边;
  2. 头结点数组:head[ ],head[i]存以i为起点的第一条边的下标(在edge[]中的下标)
struct node{
    int to,next,w;
}edge[maxe];//边集数组,边数一般要设置比maxn*maxn大的数,如果题目有要求除外

int head[maxn];//头结点数组

每一条边的结构,如图所示。     

例如,一个无向图,如图所示。

按以下顺序输入每条边的两个端点,建立的链式前向星,过程如下。

  1. 输入 1 2 5

创建一条边1—2,权值为5,创建第一条边edge[0],如图所示。

然后将该边链接到1号结点的头结点中。(初始时head[]数组全部初始化为-1)

即edge[0].next=head[1]; head[1]=0; 表示1号结点关联的第一个条边为0号边,如图所示。图中的虚线箭头仅表示他们之间的链接关系,不是指针。

因为是无向图,还需要添加它的反向边,2—1,权值为5。创建第二条边edge[1],如图所示。

然后将该边链接到2号结点的头结点中。

即edge[1].next=head[2]; head[2]=1; 表示2号结点关联的第一个条边为1号边,如图所示。

  1. 输入 1 4 3

创建一条边1—4,权值为3,创建第3条边edge[2],如图所示。

然后将该边链接到1号结点的头结点中(头插法)。

即edge[2].next=head[1]; head[1]=2; 表示1号结点关联的第一个条边为2号边,如图所示。

因为是无向图,还需要添加它的反向边,4—1,权值为3。创建第4条边edge[3],如图所示。

然后将该边链接到4号结点的头结点中。

即edge[3].next=head[4]; head[4]=3; 表示4号结点关联的第一个条边为3号边,如图所示。

  1. 依次输入以下三条边,创建的链式前向星,如图所示。

         2 3 8

         2 4 12

         3 4 9

添加一条边u v w的代码如下:

void add(int u,int v,int w){//添加一条边
    edge[cnt].to=v;
    edge[cnt].w=w;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}

如果是有向图,每输入一条边,执行一次add(u,v,w)即可;如果是无向图,则需要执行两次add(u,v,w); add(v,u,w)。

如何使用链式前向星访问一个结点u的所有邻接点呢?

for(int i=head[u];i!=-1;i=edge[i].next){
    int v=edge[i].to; //u的邻接点
    int w=edge[i].w; //u—v的权值
       …
}

链式前向星的特性:

  1. 和邻接表一样,因为采用头插法进行链接,所以边输入顺序不同,创建的链式前向星也不同。
  2. 对于无向图,每输入一条边,需要添加两条边,互为反向边。例如,输入第一条边1 2 5,实际上添加了两条边,如图所示。

这两条边可以通过互为反向边,可以通过与1的异或运算得到其反向边,0^1=1,1^1=0。也就是说如果一条边的下标为i,则其反向边为i^1。这个特性应用在网络流中非常方便。

3.链式前向星具有边集数组和邻接表的功能,属于静态链表,不需要频繁地创建结点,应用十分灵活。

总代码:

#include<iostream>//创建无向网的链式前向星 
#include<cstring>
using namespace std;
const int maxn=100000+5;
int maxx[maxn],head[maxn];
int n,m,x,y,w,cnt;

struct Edge{
	int to,w,next;
}e[maxn];

void add(int u,int v,int w){//添加一条边u--v 
 	e[cnt].to=v;
 	e[cnt].w=w;
	e[cnt].next=head[u];
	head[u]=cnt++;
} 

void printg(){//输出链式前向星
	cout<<"----------链式前向星如下:----------"<<endl;
	for(int v=1;v<=n;v++){
		cout<<v<<":  ";
		for(int i=head[v];~i;i=e[i].next){
			int v1=e[i].to,w1=e[i].w;
			cout<<"["<<v1<<" "<<w1<<"]\t";
		}
		cout<<endl;
	}
}

int main(){
	cin>>n>>m;
	memset(head,-1,sizeof(head));
	cnt=0;
	for(int i=1;i<=m;i++){
		cin>>x>>y>>w;
		add(x,y,w);//添加边
		add(y,x,w);//添加反向边 
	}
	printg();
	return 0;
}
/*输入样例
4 5
1 2 5
1 4 3
2 3 8
2 4 12
3 4 9
*/

讲解视频:https://www.bilibili.com/video/BV13r4y1X7a4

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

趣学算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值