图的存储方法很多,最常见的除了邻接矩阵、邻接表和边集数组外,还有链式前向星。链式前向星是一种静态链表存储,用边集数组和邻接表相结合,可以快速访问一个顶点的所有邻接点,在算法竞赛中广泛应用。
链式前向星存储包括两种结构:
- 边集数组:edge[ ],edge[i]表示第i条边;
- 头结点数组:head[ ],head[i]存以i为起点的第一条边的下标(在edge[]中的下标)
struct node{
int to,next,w;
}edge[maxe];//边集数组,边数一般要设置比maxn*maxn大的数,如果题目有要求除外
int head[maxn];//头结点数组
每一条边的结构,如图所示。
例如,一个无向图,如图所示。
按以下顺序输入每条边的两个端点,建立的链式前向星,过程如下。
- 输入 1 2 5
创建一条边1—2,权值为5,创建第一条边edge[0],如图所示。
然后将该边链接到1号结点的头结点中。(初始时head[]数组全部初始化为-1)
即edge[0].next=head[1]; head[1]=0; 表示1号结点关联的第一个条边为0号边,如图所示。图中的虚线箭头仅表示他们之间的链接关系,不是指针。
因为是无向图,还需要添加它的反向边,2—1,权值为5。创建第二条边edge[1],如图所示。
然后将该边链接到2号结点的头结点中。
即edge[1].next=head[2]; head[2]=1; 表示2号结点关联的第一个条边为1号边,如图所示。
- 输入 1 4 3
创建一条边1—4,权值为3,创建第3条边edge[2],如图所示。
然后将该边链接到1号结点的头结点中(头插法)。
即edge[2].next=head[1]; head[1]=2; 表示1号结点关联的第一个条边为2号边,如图所示。
因为是无向图,还需要添加它的反向边,4—1,权值为3。创建第4条边edge[3],如图所示。
然后将该边链接到4号结点的头结点中。
即edge[3].next=head[4]; head[4]=3; 表示4号结点关联的第一个条边为3号边,如图所示。
- 依次输入以下三条边,创建的链式前向星,如图所示。
2 3 8
2 4 12
3 4 9
添加一条边u v w的代码如下:
void add(int u,int v,int w){//添加一条边
edge[cnt].to=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++;
}
如果是有向图,每输入一条边,执行一次add(u,v,w)即可;如果是无向图,则需要执行两次add(u,v,w); add(v,u,w)。
如何使用链式前向星访问一个结点u的所有邻接点呢?
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].to; //u的邻接点
int w=edge[i].w; //u—v的权值
…
}
链式前向星的特性:
- 和邻接表一样,因为采用头插法进行链接,所以边输入顺序不同,创建的链式前向星也不同。
- 对于无向图,每输入一条边,需要添加两条边,互为反向边。例如,输入第一条边1 2 5,实际上添加了两条边,如图所示。
这两条边可以通过互为反向边,可以通过与1的异或运算得到其反向边,0^1=1,1^1=0。也就是说如果一条边的下标为i,则其反向边为i^1。这个特性应用在网络流中非常方便。
3.链式前向星具有边集数组和邻接表的功能,属于静态链表,不需要频繁地创建结点,应用十分灵活。
总代码:
#include<iostream>//创建无向网的链式前向星
#include<cstring>
using namespace std;
const int maxn=100000+5;
int maxx[maxn],head[maxn];
int n,m,x,y,w,cnt;
struct Edge{
int to,w,next;
}e[maxn];
void add(int u,int v,int w){//添加一条边u--v
e[cnt].to=v;
e[cnt].w=w;
e[cnt].next=head[u];
head[u]=cnt++;
}
void printg(){//输出链式前向星
cout<<"----------链式前向星如下:----------"<<endl;
for(int v=1;v<=n;v++){
cout<<v<<": ";
for(int i=head[v];~i;i=e[i].next){
int v1=e[i].to,w1=e[i].w;
cout<<"["<<v1<<" "<<w1<<"]\t";
}
cout<<endl;
}
}
int main(){
cin>>n>>m;
memset(head,-1,sizeof(head));
cnt=0;
for(int i=1;i<=m;i++){
cin>>x>>y>>w;
add(x,y,w);//添加边
add(y,x,w);//添加反向边
}
printg();
return 0;
}
/*输入样例
4 5
1 2 5
1 4 3
2 3 8
2 4 12
3 4 9
*/