Problem Description
给定的一组无重复数据的正整数,根据给定的哈希函数建立其对应hash表,哈希函数是H(Key)=Key%P,P是哈希表表长,P是素数,处理冲突的方法采用平方探测方法,增量di=±i^2,i=1,2,3,...,m-1
Input
输入包含多组测试数据,到 EOF 结束。
每组数据的第1行给出两个正整数N(N <= 500)和P(P >= 2N的最小素数),N是要插入到哈希表的元素个数,P是哈希表表长;第2行给出N个无重复元素的正整数,数据之间用空格间隔。
Output
按输入数据的顺序输出各数在哈希表中的存储位置 (hash表下标从0开始),数据之间以空格间隔,以平方探测方法处理冲突。
Sample Input
4 11 10 6 4 15 9 11 47 7 29 11 9 84 54 20 30
Sample Output
10 6 4 5 3 7 8 0 9 6 10 2 1
#include <stdio.h>
#include <string.h>
int main()
{
int p, n, h[10000], a[10000];
while(scanf("%d%d",&n,&p) != EOF)
{
int i, t;
int j = 1;
memset(h,0,sizeof(h));//空间归零
memset(a,0,sizeof(a));
for(i = 0; i < n; i++)
{
scanf("%d",&a[i]);
t = a[i]%p;//t为余数,本题采用除留余数法定义哈希函数。
if(h[t] == 0)//h数组为0,表示没有冲突,直接输出
{
h[t] = a[i];//h[t]已经使用,用a[i],标记一下。
if(i == n-1)
printf("%d\n",t);
else
printf("%d ",t);
}
else//冲突出现,采用平方探索法解决冲突。
{
int d = j*j;
while(h[(t + d)%p] && h[(t - d) % p])/*如果该余数t增减增量序列d之后h数组还有值,则d变大,直到出现一个余数t增减增量序列d之后h数组为0.*/
{
j++;
d = j*j;
}
if(h[(t + d) % p]==0)//如果t加上增量序列d取余数为0,
{
h[(t + d) % p] = a[i];//标记一下
if(i == n - 1)
printf("%d\n",(t+d)%p);/*输出,注意此时该数在哈希表中的位置是(t+d)%p。*/
else
printf("%d ",(t+d)%p);
}
else
if(h[(t-d)%p] == 0)
{
h[(t-d)%p] = a[i];
if(i == n - 1)
printf("%d\n",(t-d)%p);
else
printf("%d ",(t-d)%p);
}
}
}
}
return 0;
}
本文介绍了一种处理哈希表中冲突的方法——平方探测法,并通过一个具体的编程实例展示了如何实现。在给定一组无重复的正整数和哈希函数H(Key)=Key%P的情况下,使用平方探测法解决冲突,其中增量di=±i^2。
3865

被折叠的 条评论
为什么被折叠?



