数据结构实验之查找五:平方之哈希表

本文介绍了一种处理哈希表中冲突的方法——平方探测法,并通过一个具体的编程实例展示了如何实现。在给定一组无重复的正整数和哈希函数H(Key)=Key%P的情况下,使用平方探测法解决冲突,其中增量di=±i^2。

Problem Description

给定的一组无重复数据的正整数,根据给定的哈希函数建立其对应hash表,哈希函数是H(Key)=Key%P,P是哈希表表长,P是素数,处理冲突的方法采用平方探测方法,增量di=±i^2,i=1,2,3,...,m-1

Input

输入包含多组测试数据,到 EOF 结束。

每组数据的第1行给出两个正整数N(N <= 500)和P(P >= 2N的最小素数),N是要插入到哈希表的元素个数,P是哈希表表长;第2行给出N个无重复元素的正整数,数据之间用空格间隔。

Output

按输入数据的顺序输出各数在哈希表中的存储位置 (hash表下标从0开始),数据之间以空格间隔,以平方探测方法处理冲突。

Sample Input

4 11
10 6 4 15
9 11
47 7 29 11 9 84 54 20 30

Sample Output

10 6 4 5
3 7 8 0 9 6 10 2 1
#include <stdio.h>
#include <string.h>
int main()
{
    int p, n, h[10000], a[10000];
    while(scanf("%d%d",&n,&p) != EOF)
    {
        int i, t;
        int j = 1;
        memset(h,0,sizeof(h));//空间归零
        memset(a,0,sizeof(a));
        for(i = 0; i < n; i++)
        {
            scanf("%d",&a[i]);
            t = a[i]%p;//t为余数,本题采用除留余数法定义哈希函数。
            if(h[t] == 0)//h数组为0,表示没有冲突,直接输出
            {
                h[t] = a[i];//h[t]已经使用,用a[i],标记一下。
                if(i == n-1)
                    printf("%d\n",t);
                else
                    printf("%d ",t);
            }
            else//冲突出现,采用平方探索法解决冲突。
            {
                int d = j*j;
                while(h[(t + d)%p] && h[(t - d) % p])/*如果该余数t增减增量序列d之后h数组还有值,则d变大,直到出现一个余数t增减增量序列d之后h数组为0.*/
                {
                    j++;
                    d = j*j;
                }
                if(h[(t + d) % p]==0)//如果t加上增量序列d取余数为0,
                {
                    h[(t + d) % p] = a[i];//标记一下
                    if(i == n - 1)
                        printf("%d\n",(t+d)%p);/*输出,注意此时该数在哈希表中的位置是(t+d)%p。*/
                    else
                        printf("%d ",(t+d)%p);
                }
                else
                    if(h[(t-d)%p] == 0)
                {
                    h[(t-d)%p] = a[i];
                    if(i == n - 1)
                        printf("%d\n",(t-d)%p);
                    else
                        printf("%d ",(t-d)%p);
                }
            }
        }
    }
    return 0;
}

 

内容概要:本文主要介绍了一种基于Matlab实现的交叉小波和小波相干性分析方法,旨在帮助科研人员通过Matlab代码实现信号交叉小波和小波相干性(Matlab代码实现)的时频域联合分析。交叉小波可用于分析两个非平稳信号之间的局部相关性,而小波相干性则进一步揭示它们在不同频率和时间尺度上的相干程度,适用于气象、海洋、生物医学、电力系统等多领域的时间序列数据分析。文中提供了完整的Matlab代码示例,并结合实际应用场景展示其操作流程与结果可视化方式。; 适合人群:具备一定信号处理基础和Matlab编程能力的研究生、科研人员及工程技术人员,尤其适合从事时间序列分析、多变量信号相关性研究的相关领域工作者。; 使用场景及目标:①分析两个时间序列在时频域内的局部相关性和相位关系;②识别信号间的周期性耦合特征,如气候因子关联、脑电/心电信号交互、电力负荷与气象因素的关系等;③通过小波相干图直观展示变量间的动态关联强度与滞后关系,支撑科学决策与机理探究; 阅读建议:建议读者结合Matlab环境实际运行所提供的代码,理解小波变换、交叉小波与小波相干性的数学原理,并尝试将方法迁移至自身研究领域的数据集上进行验证与优化,同时注意参数设置(如小波基函数、边缘效应处理)对结果的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值