pytorch手写数字识别感人的小bug

在运行mnist_train.py时遇到TypeError:zipargument#2mustsupportiteration的错误。问题出在载入数据集时使用的normalize步骤,由于MNIST图像为简单的二值图像,不需要此标准化处理。注释掉这部分代码后,不仅解决了错误,还使测试准确率提升了约4个百分点。
摘要由CSDN通过智能技术生成

在运行mnist_train.py时报错“TypeError: zip argument #2 must support iteration",报错原图如下:

按照error提示是类型错误,第二个参数必须支持迭代。由于是初学小白,实在是折磨了好长时间。在网上查询了很多,无果。

解决方法:(与个人的代码有关),在载入数据集时使用了normalize标准化,标准化的作用时缩小图片之间的差距,对于mnist这种简单二值图像不需要,所以将载入数据时的normalize相关语句注释掉即可。同时,测试准确率提升4个点左右。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值