Langchain中chain的不同调用方法 chain.invoke(context)只可传入一个参数,若传入多个参数,利用chain.invoke({‘context’: context, ‘num’:num})返回dict形式,通过添加, return_only_outputs=True,可以只返回text键。chain.run(context)这种形式只用于传入一个参数,若传入多个参数,调用形式如下。chain(context)只可传入一个参数,若传入多个参数,调用形式如下。单个或者多个输出参数,调用方式都如下,其他方式出错。
cuda错误:You are running using the stub version of cusolver 报错信息如下:You are running using the stub version of cusolver上述错误说明你使用了stub版本的libcusolve,替换成对应版本就好。有坑的地方:去到cuda安装的目录lib64下,看到明明有libcusolver.so文件,把它删掉或者放到stubs目录下。这时如果你从别处拷一份libcusolver.so过来,会发现不能复制或者出现You are running using the stub version of cusolver同样的错误
cuda错误:libcudart.so.10.2: cannot open shared object file 报错信息如上,原因是cuda中缺少libcudart.so.10.2文件解决方法:1、从别处同一版本cuda的lib64文件下,复制一个,放到/usr/loca/cuda***/lib64的文件夹内2、从nvidia官网下载cuda,重新安装或者解压取到libcudart.so.10.2同样的,缺少libcusolver.so、libcusolver.so.10、libcufft.so.10、libnvrtc.so.10.2等文件,同样操作即可...
mxnet中cuda错误:CUDA: invalid device ordinal mxnet.base.MXNetError: [10:32:39] src/engine/./…/common/cuda_utils.h:395: Check failed: e == cudaSuccess || e == cudaErrorCudartUnloading: CUDA: invalid device ordinal上述错误,说明当前使用cuda的编号错误,仔细查看gpu的id
pytorch中AdaGrad优化器源码解读 1. AdaGrad算法花书中截图,随便找了一张。2.源码def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace o 错误如下RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.IntTensor [12, 1, 10]] is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that fai
GPU使用错误:维度不匹配 错误:上述错误看着像是维度不匹配,实际是生成数据的错误1、GPU数量2,使用Dataparallel加载inputs:[batch_size, length]其中的一个输入,即bert中positional embedding,偷了个巧,反正每个样本其值都一样,所幸在DataLoader中将其维度设置为[1, length, embed_dim],然后就悲剧了。模型进行数据并行时,例如这里是两块GPU,实际是将数据分成两份,按照batch_size的维度进行分配。如果positional emb
由极大似然估计推导损失函数——Logistic回归 1、损失函数推导假定yyy服从于Bernoulli分布,也即f(y)=py(1−p)1−yf(y)=p^y(1-p)^{1-y} f(y)=py(1−p)1−y其中y=0,1参照李航《统计学习方法》第二版p93解法,易得对数似然函数为L(w)=∑i=1N[yi(wxi)−log(1+exp(wxi))]L(w)=\sum_{i=1}^{N}[y_i(wx_i)-log(1+exp(wx_i))]L(w)=i=1∑N[yi(wxi)−log(1+exp(wxi))]所以,lo
交叉熵损失公式与手动计算 1、交叉熵损失函数交叉熵的公式有多种形式,一般写作loss=−1n∑j=1nyjlnaj(∗∗)loss=-\frac{1}{n}\sum_{j=1}^{n}y_jlna_j (**)loss=−n1j=1∑nyjlnaj(∗∗)lossj=−yjlnaj(1)loss_j=-y_jlna_j (1)lossj=−yjlnaj(1)lossjloss_jlossj表示第j个样本的损失。aja_jaj表示softmax函数输出。yjy_jyj表示第j个样本的真实标签,为o