Bingoyear
码龄7年
关注
提问 私信
  • 博客:211,122
    211,122
    总访问量
  • 63
    原创
  • 17,725
    排名
  • 126
    粉丝
  • 26
    铁粉
  • 学习成就

个人简介:自信人生二百年,会当击水三千里。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2017-10-11
博客简介:

跨过一座座山

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    525
    当月
    6
个人成就
  • 获得116次点赞
  • 内容获得38次评论
  • 获得315次收藏
  • 代码片获得305次分享
创作历程
  • 2篇
    2024年
  • 6篇
    2023年
  • 1篇
    2022年
  • 7篇
    2021年
  • 20篇
    2020年
  • 23篇
    2019年
  • 6篇
    2018年
成就勋章
TA的专栏
  • Agent应用
    2篇
  • Pytorch使用
    16篇
  • cuda
    3篇
  • 其他
  • linux使用
    5篇
  • C++使用
    1篇
  • MySQL使用
    3篇
  • github使用
    4篇
  • Tensorflow使用
    5篇
  • Keras使用
    2篇
  • python的错误集合
    5篇
  • 机器学习算法
    9篇
  • 数据集
  • NLP
    12篇
  • 转载的模型讲解
    1篇
  • 面试常用算法
兴趣领域 设置
  • 人工智能
    自然语言处理知识图谱nlpchatgpt
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

运行Swarm智能体—基于Qwen开源模型

Swarm框架+开源模型+Agent跳转
原创
发布博客 2024.10.17 ·
416 阅读 ·
3 点赞 ·
2 评论 ·
1 收藏

Langchain中chain的不同调用方法

chain.invoke(context)只可传入一个参数,若传入多个参数,利用chain.invoke({‘context’: context, ‘num’:num})返回dict形式,通过添加, return_only_outputs=True,可以只返回text键。chain.run(context)这种形式只用于传入一个参数,若传入多个参数,调用形式如下。chain(context)只可传入一个参数,若传入多个参数,调用形式如下。单个或者多个输出参数,调用方式都如下,其他方式出错。
原创
发布博客 2024.06.19 ·
393 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

LLaMA-2的模型架构

输出probs:[B, L, vab_size]
原创
发布博客 2023.08.30 ·
371 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PaLM中ROPE位置编码实现源码解析

可于下面链接中LLaMA中ROPE实现做对比。,拆解后可以得到下式。
原创
发布博客 2023.08.25 ·
1009 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

LLaMA中ROPE位置编码实现源码解析

1、Attention中q,经下式,生成新的q。m为句长length,d为embedding_dim/head。2、LLaMA中RoPE源码。
原创
发布博客 2023.08.24 ·
2602 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

torch中查看某张量是否含有nan

上述张量返回 [n, *],若n==0,无nan;
原创
发布博客 2023.08.24 ·
424 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ChatGLM的模型架构

ChatGLM的部署微调等,很多资料,不再赘述。
原创
发布博客 2023.06.08 ·
4670 阅读 ·
2 点赞 ·
2 评论 ·
7 收藏

einops中pack、unpack方法的使用记录

einops中pack、unpack使用
原创
发布博客 2023.02.17 ·
1577 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Darknet转为Pytorch

Darknet转为Pytorch
原创
发布博客 2022.04.18 ·
1010 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cuda错误:You are running using the stub version of cusolver

报错信息如下:You are running using the stub version of cusolver上述错误说明你使用了stub版本的libcusolve,替换成对应版本就好。有坑的地方:去到cuda安装的目录lib64下,看到明明有libcusolver.so文件,把它删掉或者放到stubs目录下。这时如果你从别处拷一份libcusolver.so过来,会发现不能复制或者出现You are running using the stub version of cusolver同样的错误
原创
发布博客 2021.12.09 ·
1279 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cuda错误:libcudart.so.10.2: cannot open shared object file

报错信息如上,原因是cuda中缺少libcudart.so.10.2文件解决方法:1、从别处同一版本cuda的lib64文件下,复制一个,放到/usr/loca/cuda***/lib64的文件夹内2、从nvidia官网下载cuda,重新安装或者解压取到libcudart.so.10.2同样的,缺少libcusolver.so、libcusolver.so.10、libcufft.so.10、libnvrtc.so.10.2等文件,同样操作即可...
原创
发布博客 2021.12.09 ·
6657 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

mxnet中cuda错误:CUDA: invalid device ordinal

mxnet.base.MXNetError: [10:32:39] src/engine/./…/common/cuda_utils.h:395: Check failed: e == cudaSuccess || e == cudaErrorCudartUnloading: CUDA: invalid device ordinal上述错误,说明当前使用cuda的编号错误,仔细查看gpu的id
原创
发布博客 2021.12.09 ·
1304 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

WeightNorm的原理

转载自知乎,侵删
转载
发布博客 2021.06.16 ·
4132 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏

pytorch中AdaGrad优化器源码解读

1. AdaGrad算法花书中截图,随便找了一张。2.源码def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None
原创
发布博客 2021.06.10 ·
683 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace o

错误如下RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.IntTensor [12, 1, 10]] is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that fai
原创
发布博客 2021.01.22 ·
353 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GPU使用错误:维度不匹配

错误:上述错误看着像是维度不匹配,实际是生成数据的错误1、GPU数量2,使用Dataparallel加载inputs:[batch_size, length]其中的一个输入,即bert中positional embedding,偷了个巧,反正每个样本其值都一样,所幸在DataLoader中将其维度设置为[1, length, embed_dim],然后就悲剧了。模型进行数据并行时,例如这里是两块GPU,实际是将数据分成两份,按照batch_size的维度进行分配。如果positional emb
原创
发布博客 2020.11.19 ·
1474 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

由极大似然估计推导损失函数——Logistic回归

1、损失函数推导假定yyy服从于Bernoulli分布,也即f(y)=py(1−p)1−yf(y)=p^y(1-p)^{1-y} f(y)=py(1−p)1−y其中y=0,1参照李航《统计学习方法》第二版p93解法,易得对数似然函数为L(w)=∑i=1N[yi(wxi)−log(1+exp(wxi))]L(w)=\sum_{i=1}^{N}[y_i(wx_i)-log(1+exp(wx_i))]L(w)=i=1∑N​[yi​(wxi​)−log(1+exp(wxi​))]所以,lo
原创
发布博客 2020.08.03 ·
1236 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

交叉熵损失公式与手动计算

1、交叉熵损失函数交叉熵的公式有多种形式,一般写作loss=−1n∑j=1nyjlnaj(∗∗)loss=-\frac{1}{n}\sum_{j=1}^{n}y_jlna_j (**)loss=−n1​j=1∑n​yj​lnaj​(∗∗)lossj=−yjlnaj(1)loss_j=-y_jlna_j (1)lossj​=−yj​lnaj​(1)lossjloss_jlossj​表示第j个样本的损失。aja_jaj​表示softmax函数输出。yjy_jyj​表示第j个样本的真实标签,为o
原创
发布博客 2020.07.30 ·
4012 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

cx_Oracle-7.3.0.tar.gz

发布资源 2020.06.29 ·
gz

windows下cx_oracle安装包

发布资源 2020.06.29 ·
whl
加载更多