目录
K-Means聚类算法介绍
K-Means又称为K均值聚类算法,属于聚类算法中的一种,而聚类算法在机器学习算法中属于无监督学习,在业务中常常会结合实际需求与业务逻辑理解来完成建模;
无监督学习:训练时只需要特征矩阵X,不需要标签;
K-Means聚类算法基础原理
K-Means聚类算法是聚类算法家族中的典型代表,同时也是最简单的算法,接下来为大家简单地介绍聚类算法基本原理:
将一组存在N个样本的特征矩阵X划分为K个无交集的簇,每一个簇中含有多个数据,每一个数据代表着一个样本,在同一个簇中的数据即被算法认为是同一类;
- N:假设为样本数量;
- K:假设为聚类簇的数量;
- 簇:类似于集合,也可以通俗地理解成一个小组,不同小组等于不同分类;
而一个簇中的所有数据的均值,被称为这个簇的质心,质心的维度与特征矩阵X的维度相同,如特征矩阵X是三维数据集,质心也就是一个三维的坐标,如此类推至更高维度;
K-Means聚类算法实现流程
步骤一:随机在N个样本中抽取K个作为初始的质心;
步骤二:开始遍历除开质心外的所有样本点,将其分配至距离它们最近的质心,每一个质心以及被分配至其下的样本点视为一个簇(或者说一个分类),这样便完成了一次聚类;
步骤三:对于每一个簇,重新计算簇内所有样本点的平均值,取结果为新的质心;
步骤四:比对旧的质心与新的质心是否再发生变化,若发生变化,按照新的质心从步骤二开始重复,若没发生变化,聚类完成;
关键要点:不断地为样本点寻找质心,然后更新质心,直至质心不再变化;
开始做一个简单的聚类
环境说明:本文实际案例中使用Jupyter环境下运行(安装与使用可自行百度);
数据导入
做数据分析前,首先第一步是导入数据,可以利用pandas内的read_csv函数来导入数据;
首先,导入所需要用到的类,并使用read_csv函数导入案例数据:
import numpy as np
import pandas as pd
data = pd.read_csv(r'D:\Machine_learning\KMeans\client_data.csv')
# 使用pandas中的read_csv函数导入数据集后,默认格式为DataFrame
# 直接查看当前数据集长什么样子
data.head()
数据打开后会发现大概长这样:
交易额 成交单量 最近交易时间
0 76584.92 294 64
1 94581.00 232 1
2 51037.60 133 1
3 43836.00 98 1
4 88032.00 95 2
# 若表头项为中文时,可能出现乱码情况,请自行百度解决,或直接修改为英文;