数列极限
0.9999....=1
任给一小邻域,总能找到n>N后的值都落在该邻域内
若存在常数a, 任给epsilon>0,存在N, 当n>N时, |xn-a|<epsilon ==>{xn}以a为极限
定义证明极限
求极限
复习回归
各函数在第一象限增减性
幂函数--x^a
a<0,递减
a>0,递增
指数函数-a^x
a<1, 递减
a>1, 递增
对数函数-logaX
a<1, 递减
a>1, 递增
性质
1)数列收敛, 则极限唯一
2)有界与收敛
有界是收敛的必要条件,而不是充分条件
单调有界, 才有极限,也就是收敛
3){xn}收敛于a, 任何子数列{xn}也收款于a
infer1)有一个子数列不收敛, 则原数列发散
infer2)找到两个及以上数列收敛, 但是极限不同, 则原数列发散
infer3)原数列收敛<=>奇数列, 偶数列构成的子数列收敛, 且极限相同
infer4)找到两个及以上字数列收敛, 且极限相同, 原数列未必收敛