数列极限知识点小结

数列极限
    0.9999....=1
    任给一小邻域,总能找到n>N后的值都落在该邻域内
    若存在常数a, 任给epsilon>0,存在N, 当n>N时, |xn-a|<epsilon  ==>{xn}以a为极限
        定义证明极限
        求极限

    复习回归
        各函数在第一象限增减性
            幂函数--x^a
                a<0,递减
                a>0,递增
            指数函数-a^x
                a<1, 递减
                a>1, 递增
            对数函数-logaX
                a<1, 递减
                a>1, 递增

     性质
            1)数列收敛, 则极限唯一
            2)有界与收敛
                有界是收敛的必要条件,而不是充分条件
                单调有界, 才有极限,也就是收敛
            3){xn}收敛于a, 任何子数列{xn}也收款于a
                infer1)有一个子数列不收敛, 则原数列发散
                infer2)找到两个及以上数列收敛, 但是极限不同, 则原数列发散
                infer3)原数列收敛<=>奇数列, 偶数列构成的子数列收敛, 且极限相同
                infer4)找到两个及以上字数列收敛, 且极限相同, 原数列未必收敛

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值