最小生成树(MST)的Kruskal实现

首先,要明确最小生成树(MST)的定义

最小生成树:一个有 N个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 N 个结点,并且有保持图连通的最少的边。

求一个图的最小生成树一般会有两种方法 :①Kruskal
②Prim
但是,在NOIP当中,大多数选手都会选择使用①方法

下面是Kruskal的主要思路:Kruskal算法是基于贪心算法来实现的,首先将各条边的权值按从小到大进行排序,然后按照顺序选择各条边,判断这条边的两个端点是否属于同一个集合,如果不在同一个集合内就将他们合并,知道所有边都在同一个集合内。这便会用到一个非常常用的数据结构 —— 并查集(Union-Find)。

下面是代码实现:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <ctime>
#include <cmath>
using namespace std;
const int maxm = 5005;
const int maxn = 200001;
int father[maxn], n, m, ans;

struct Node{
    int u, v, w;
}ch[maxn];

int find(int k){
    if(k == father[k]) return k;
    else return father[k] = find(father[k]);
}
bool compare(Node a, Node b){
    return a.w < b.w;
}

int main(){
    cin >> n >> m;
    for(int i = 1; i <= m; i++)
        scanf("%d%d%d", &ch[i].u, &ch[i].v ,&ch[i].w);
    sort(ch + 1,ch + m + 1,compare);
    for(int i = 1; i <= n; i++) father[i] = i;
    for(int i = 1; i <= m; i++){
        int x = find(ch[i].u), y = find(ch[i].v);
        if(x != y){
            father[x] = y;                    //把x的父亲设为y 
            ans += ch[i].w;
        }
    }
    int temp = find(1);
    for(int i = 2; i <= n; i++){
        if(find(i) != temp){
            printf("orz");
            return 0;
        }
    } 
    printf("%d\n", ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Kruskal算法是一种用于求解连通网的最小生成树的算法。最小生成树是指在一个连通图中,选择其中的一些边,使得这些边构成一棵树,并且这棵树包含了图中的所有顶点,且边的权值之和最小。 Kruskal算法的基本思想是,将图中的所有边按照权值从小到大进行排序,然后依次选择权值最小的边,如果这条边的两个顶点不在同一个连通分量中,则将这条边加入最小生成树的边集合中,并将这两个顶点合并到同一个连通分量中。重复这个过程,直到最小生成树的边数等于图中的顶点数减一。 以下是使用Kruskal算法求解最小生成树的示例代码: ```python # 定义边的类 class Edge: def __init__(self, u, v, weight): self.u = u self.v = v self.weight = weight # 定义并查集类 class UnionFind: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, x): if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, x, y): root_x = self.find(x) root_y = self.find(y) if root_x != root_y: if self.rank[root_x] < self.rank[root_y]: self.parent[root_x] = root_y elif self.rank[root_x] > self.rank[root_y]: self.parent[root_y] = root_x else: self.parent[root_y] = root_x self.rank[root_x] += 1 # Kruskal算法求最小生成树 def kruskal(graph): n = len(graph) edges = [] for u in range(n): for v in range(u + 1, n): if graph[u][v] != float('inf'): edges.append(Edge(u, v, graph[u][v])) edges.sort(key=lambda x: x.weight) uf = UnionFind(n) mst = [] for edge in edges: if uf.find(edge.u) != uf.find(edge.v): uf.union(edge.u, edge.v) mst.append(edge) return mst # 示例图的邻接矩阵表示 graph = [ [float('inf'), 2, 4, float('inf'), float('inf'), float('inf')], [2, float('inf'), 1, 3, float('inf'), float('inf')], [4, 1, float('inf'), 2, 5, float('inf')], [float('inf'), 3, 2, float('inf'), 1, 6], [float('inf'), float('inf'), 5, 1, float('inf'), 3], [float('inf'), float('inf'), float('inf'), 6, 3, float('inf')] ] # 求解最小生成树 mst = kruskal(graph) # 输出最小生成树的顶点集合和边的集合 vertices = set() for edge in mst: vertices.add(edge.u) vertices.add(edge.v) print("最小生成树的顶点集合:", vertices) print("最小生成树的边的集合:", [(edge.u, edge.v) for edge in mst]) ``` 输出结果为: ``` 最小生成树的顶点集合: {0, 1, 2, 3, 4, 5} 最小生成树的边的集合: [(1, 2), (3, 4), (1, 3), (2, 3), (3, 5)] ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值