莫队算法模板

给你一个n,接下来给你n个数的数组,之后给你m,接下来有m个区间,让你求每个区间中每个数字数量的立方和。
例:
输入:

8
1 1 3 1 3 1 3 3
4
1 8
3 8
5 6
5 5

输出:
128
72
2
1

代码:

#include"map"
#include"math.h"
#include"stdio.h"
#include"string.h"
#include"algorithm"
using namespace std;
int m,n,pos[100010],c[100010];
long long ans,num[100010];
map<int,int>match;
struct M
{
	int l,r,id;
	long long ans;
}arr[100010];
bool cmp1(M a,M b)
{
	return pos[a.l]<pos[b.l]||(pos[a.l]==pos[b.l]&&a.r<b.r);
}
bool cmp2(M a,M b)
{
	return a.id<b.id;
}
void update(int p,int add)
{
	ans-=num[c[p]]*num[c[p]]*num[c[p]];
	num[c[p]]+=add;
	ans+=num[c[p]]*num[c[p]]*num[c[p]];
}
void solve()
{
	int i,l=1,r=0;
	ans=0;
	memset(num,0,sizeof(num));
	for(i=1;i<=m;i++)//更新区间 
	{
		for(;r<arr[i].r;r++)//右端点向右扩展 
		update(r+1,1);
		for(;r>arr[i].r;r--)//右端点向左收缩 
		update(r,-1);
		for(;l<arr[i].l;l++)//左端点向右收缩 
		update(l,-1);
		for(;l>arr[i].l;l--)//左端点向左扩展 
		update(l-1,1);
		arr[i].ans=ans;
	}
}
int main()
{
	while(~scanf("%d",&n))
	{
		int i,k,tot=0;
		for(i=1;i<=n;i++)
		scanf("%d",&c[i]);
		k=sqrt((double)n);
		for(i=1;i<=n;i++)//分组 
		pos[i]=(i-1)/k+1;
		match.clear();
		for(i=1;i<=n;i++)//离散化 
		{
			if(match[c[i]]>0)
			c[i]=match[c[i]];
			else
			{
				match[c[i]]=++tot;
				c[i]=tot;
			}
		}
		scanf("%d",&m);
		for(i=1;i<=m;i++)
		{
			scanf("%d %d",&arr[i].l,&arr[i].r);
			arr[i].id=i;
		}
		sort(arr+1,arr+1+m,cmp1);
		solve();
		sort(arr+1,arr+1+m,cmp2);
		for(i=1;i<=m;i++)
		printf("%I64d\n",arr[i].ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值