Yarn原理
Yarn中的各个角色
在YARN中,有几个关键的角色,它们共同协作以确保集群的高效运行。以下是YARN中的主要角色及其作用:
-
ResourceManager (RM)
-
是YARN的核心组件,负责整个集群的资源管理和调度。
-
接收来自客户端(如用户提交的作业)的请求。
-
与NodeManager进行交互以监控集群的资源使用情况和任务执行状态。
-
负责启动或监控ApplicationMaster。
-
包含两个主要组件:调度器(Scheduler)和应用程序管理器(Applications Manager, ASM)。
-
-
NodeManager (NM)
-
运行在每个集群节点上,负责监控节点上的资源使用情况(如CPU、内存、磁盘等)。
-
向ResourceManager报告节点的可用资源。
-
根据ResourceManager的指令启动和停止容器(Container)。
-
-
ApplicationMaster (AM)
-
是用户提交的每个应用程序实例的框架内的“主”进程。
-
负责与ResourceManager协商资源,并获取足够的资源来运行应用程序。
-
与NodeManager协同工作,以分配任务到具体的节点上。
-
负责任务的调度、监控和容错处理。
-
-
Container
-
是YARN中的资源抽象单元,表示分配给应用程序的计算资源,包括CPU、内存和磁盘等。
-
由ResourceManager分配,由NodeManager启动和管理。
-
-
Client
-
通常指的是提交作业或任务的客户端,如用户或应用程序。
-
通过YARN提供的API或命令行工具与ResourceManager进行交互,提交作业或任务。
-
这些角色在YARN中相互协作,形成一个分布式的、可伸缩的、高效的资源管理系统,用于运行大数据应用程序,如Hadoop MapReduce作业和其他类型的应用程序。
yarn的工作机制
详细流程
① 作业提交
- 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。
- 第2步:Client向RM申请一个作业id。
- 第3步:RM给Client返回该job资源的提交路径和作业id。
- 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。
- 第5步:Client提交完资源后,向RM申请运行MrAppMaster。
② 作业初始化
- 第6步:当RM收到Client的请求后,将该job添加到容量调度器中。
- 第7步:某一个空闲的NM领取到该Job。
- 第8步:该NM创建Container,并产生MRAppmaster。
- 第9步:下载Client提交的资源到本地。
③ 任务分配
- 第10步:MrAppMaster向RM申请运行多个MapTask任务资源。
- 第11步:RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
④ 任务运行
- 第12步:MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。
- 第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
- 第14步:ReduceTask向MapTask获取相应分区的数据。
- 第15步:程序运行完毕后,MR会向RM申请注销自己。
⑤ 进度和状态更新
- YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。
⑥ 作业完成
- 除了向应用管理器请求作业进度外, 客户端每5秒都会通过调用waitForCompletion()来检查作业是否完成。时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业完成之后, 应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。