这道题目看了好一会都没看懂,后来才终于明白题意了。
在一个乱序的整数数组中找到第一个缺失的正整数,例如:在数组[1,2,0]中,从1开始数,有1,2,但是缺少3,所以返回3;在数组[3,4,-1,1]中,从1开始数,有1,3,4,但是没有2,所以返回2。
这道题要求算法的时间复杂度为O(n),且额外空间为常数。
解题思路:首先在nums[i]上放置正确的整数i+1,如果不是,则进行交换,将其放置到正确的位置。之后再遍历进行判断,nums[i]上是否为i+1,如果不是,则返回i+1即可。
其中需要注意的是:
1. 需要判断此时该位置上是否是正确的整数,如果是,则无需进行交换,不然会出现无限循环;
2. 在进行交换后,i不应该进行+1,不然的话,会漏掉交换后,nums[i]上的整数;
3. 利用数组[1,2,5,3,4],即不缺少中间的正整数,那么需要按照顺序应该返回6,即len+1。
代码如下:
class Solution {
public int firstMissingPositive(int[] nums) {
int len = nums.length;
int i = 0;
while(i<len){
//交换前后位置上的数值均不为正确数值的情况下,才进行交换
if(nums[i]!=i+1 && nums[i]>0 && nums[i]<len && nums[nums[i]-1]!=nums[i] ){
int tmp = nums[nums[i]-1];
nums[nums[i]-1] = nums[i];
nums[i] = tmp;
}
else
i++;
}
for(int j=0;j<len;j++){
if(nums[j]!=j+1)
return j+1;
}
return len+1;
}
}