滴滴出行A/B测试&城市运营分析

本文通过A/B测试分析了实验条件对滴滴出行的requests、gmv和ROI的影响,结果显示实验条件对gmv和ROI有显著影响。同时,通过对城市运营数据的探索,发现12点和13点的订单需求最大,但13点订单完成率低,司机在忙率高,表明车辆供应和响应效率有待提升。
摘要由CSDN通过智能技术生成

目录

文章目录

前言

数据说明

一、A/B测试效果分析

1 数据导入

2 计算ROI(投资回报率) 

3 requests检验

3.1 requests方差检验

3.2 requests均值检验

4 gmv检验

4.1 gmv方差检验

4.2 gmv均值检验

5 ROI检验

5.1 ROI方差检验

5.2 ROI均值检验

二、城市运营分析

1 数据导入

2 数据探索 

2.1 订单量最多的时间点

2.2 订单量最多的日期

2.3 各时段订单完成率

2.4 单月每日订单完成率

2.5 顾客等待时间

2.6 司机在忙率

2.7 订单时长

总结




前言

随着企业日常经营活动的进行,企业内部必然产生了各式各样的数据,如何利用这些数据得出有益的见解,并支持我们下一步的产品迭代以及领导决策就显得尤为重要。

A/B测试是互联网企业常用的一种基于数据的产品迭代方法,它的主要思想是在控制其他条件不变的前提下对不同(或同一、同质)样本设计不同实验水平(方案),并根据最终的数据变现来判断自变量对因变量的影响;A/B测试的理论基础主要源于数理统计中的假设检验部分。

数据说明

数据集分为test.xlsx与city.xlsx两部分:

其中test.xlsx为滴滴出行某次A/B测试结果数据,各字段说明如下:

字段名称 字段解释
date 日期
group 组别
requests 订单请求数
gmv 成交总额
coupon per trip 每单优惠券金额
trips 订单数
canceled requests 取消请求数

city.xlsx为某城市运营数据,各字段说明如下:

字段名称 字段解释
date 日期
hour 时点
requests 订单请求数
trips 订单数
supply hours 可服务时长
average minutes of trips 平均订单时长
pETA 顾客预计等待时长
aETA 顾客实际等待时长
utiliz 司机在忙率

test.xlsx数据可以用来判断实验条件对此次A/B测试的结果影响是否显著;city.xlsx数据可以用来探索该城市运营中出现的问题,根据关键结论辅助决策。




一、A/B测试效果分析

1 数据导入

#A/B测试结果数据导入

import pandas as pd

test = pd.read_excel('test.xlsx', engine='openpyxl')
test.head()

这里需要注意xlrd1.2.0之后的版本不支持xlsx格式,支持xls格式。

办法一:

卸载新版本:pip uninstall xlrd

安装老版本:pip install xlrd=1.2.0 (或者更早版本)

方法二:

将xlrd用到的excel版本格式修改为xls(保险起见,另存为xls格式)

办法三:

使用openpyxl库去连接"xlsx"格式文件,代码跟换为:

test = pd.read_excel('test.xlsx', engine='openpyxl')

2 计算ROI(投资回报率) 

#计算优惠券投入相对gmv的ROI

test['ROI']=test['gmv']/(test['coupon per trip']*test['trips'])
test.head()

3 requests检验

test.group.value_counts()

 数据共58条,对照组与实验组各29条。

3.1 requests方差检验

记两组requests方差分别为c1,c2

零假设H0:c1=c2;备选假设H1:c1≠c2

显著性水平取0.05

#levene检验requests是否齐方差

requests_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值