数据分析_滴滴AB test面试题及城市运营分析

本文通过分析滴滴AB测试数据,发现每日GMV存在显著性差异,实验组GMV和ROI均低于控制组。城市运营情况显示,周末请求量远高于周内,12点订单最多但接单率下降,实际等待时长超过预计。建议优化运营策略,提高运力,优化时间预估和订单分配算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

滴滴AB test面试题及运营情况分析

从和鲸上看到了一个滴滴数据集,看介绍说的是数据来自滴滴出行内部,也有小道消息说是面试题?那我们来试一下。

数据字典

上图为两个数据集的数据字典,可以看出来维度比较少,进行AB test的test数据集是58行,运营情况分析的city数据集是90行。两者皆无空值。

AB test分析

数据清洗及特征工程


数据量虽少,但好在没有缺失值。先将数据拆分为参照组和实验组,这边我用group_A代替参照组,group_B代替实验组。

group_A = test.query("group == 'control'")
group_B = test.query("group == 'experiment'")

简单的看一下group_A几个维度随着日期变化的趋势。

这么看起来,好像有点牛逼?每天的指标都是上升的,或者说数据集里面储存的是累计数据?我们将他清洗一下成为每日数据。

for col in ['trips','requests','canceled requests','gmv']:
    group_A[f"c_{col}"]=group_A[col].diff().fillna(group_A[col].min())
# 计算每天的每单优惠券金额
group_A['coupon_consum'] = (group_A[
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值